-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtext_2_lda.html
422 lines (344 loc) · 83.3 KB
/
text_2_lda.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta http-equiv="x-ua-compatible" content="IE=9" >
<title>LDA Topic Modeling</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<h1>LDA Topic Modeling</h1>
<p><em>© 2014 Wouter van Atteveldt, license: [CC-BY-SA]</em></p>
<p>Latent Dirichlet Allocation is a topic modeling algorithm that automatically clusters words that for a cohesive pattern of co-occurrence.
LDA assumes a 'generative model', where a text is generated by selecting one or more topics, and then drawing words from each of those topics.
Thus, each document has multiple topics and each word can occur in multiple topics. </p>
<h2>Creating a topic model</h2>
<p>Topic models are constructed directly from a term-document matrix using the <code>topicmodels</code> package.
As before, we use the <code>create_matrix</code> function from the <code>RTextTools</code> package to create the term-document matrix from a set of customer reviews.
Note that we need to remove empty rows or columns (e.g. empty reviews).
The <code>achmea.csv</code> file can be downloaded from <a href="https://raw.githubusercontent.com/vanatteveldt/learningr/master/achmea.csv">github</a>.</p>
<pre><code class="r">library(RTextTools)
</code></pre>
<pre><code>## Loading required package: SparseM
##
## Attaching package: 'SparseM'
##
## The following object is masked from 'package:base':
##
## backsolve
</code></pre>
<pre><code class="r">library(slam)
d = read.csv("achmea.csv")
m = create_matrix(d$CONTENT, language="dutch", removeStopwords=T, )
m = m[row_sums(m) > 0,col_sums(m) > 0]
dim(m)
</code></pre>
<pre><code>## [1] 21229 29022
</code></pre>
<p>Now, we can fit the topic model, say with k=10 topics and alpha=.5.
(A smaller alpha means that topics are more 'concentrated' in the documents)</p>
<pre><code class="r">library(topicmodels)
fit = LDA(m, k=10, method="Gibbs", control=list(iter=500, alpha=.5))
</code></pre>
<p>We can visually inspect the words per topics using the <code>terms</code> function:</p>
<pre><code class="r">terms(fit, 10)
</code></pre>
<pre><code>## Topic 1 Topic 2 Topic 3 Topic 4
## [1,] "zorgverzekering" "centraalbeheer" "0900" "httpt"
## [2,] "fbto" "fbtowebcare" "fbto" "centraalbeheer"
## [3,] "2014" "evenapeldoornbellen" "mensen" "autoverzekering"
## [4,] "echt" "jullie" "ver" "gratis"
## [5,] "ditzo" "httpt" "echt" "afsluiten"
## [6,] "premies" "fbto" "gaan" "keuze"
## [7,] "zorgpremie" "weer" "weten" "via"
## [8,] "vergelijken" "bedankt" "helpen" "vraagt"
## [9,] "jaar" "lekker" "vinden" "scherpe"
## [10,] "zorgve" "nieuwe" "paar" "autocheck"
## Topic 5 Topic 6 Topic 7 Topic 8
## [1,] "fbto" "centraal" "apeldoorn" "beheer"
## [2,] "wel" "beheer" "even" "centraal"
## [3,] "verzekering" "achmea" "bellen" "the"
## [4,] "jullie" "httpt" "httpt" "commercial"
## [5,] "jaar" "2014" "volkert" "car"
## [6,] "fbtowebcare" "midwintermarathon" "nieuwe" "and"
## [7,] "eigen" "week" "reclame" "achmea"
## [8,] "premie" "uitslag" "winter" "banned"
## [9,] "verzekerd" "schreef" "echte" "driving"
## [10,] "per" "online" "youtube" "self"
## Topic 9 Topic 10
## [1,] "httpt" "goed"
## [2,] "auto" "snelle"
## [3,] "fbto" "goede"
## [4,] "nieuwe" "snel"
## [5,] "zelfrijdende" "afhandeling"
## [6,] "beheer" "schade"
## [7,] "centraal" "via"
## [8,] "commercial" "zeer"
## [9,] "via" "verzekeringen"
## [10,] "achmea" "service"
</code></pre>
<p>And let's make a word cloud of the first topic:</p>
<pre><code class="r">library(RColorBrewer)
library(wordcloud)
x = posterior(fit)$terms[1,]
x = sort(x, decreasing=T)[1:100]
x = x[!is.na(x)]
pal <- brewer.pal(6,"YlGnBu")
wordcloud(names(x), x, scale=c(6,.5), min.freq=1, max.words=Inf, random.order=FALSE, rot.per=.15, colors=pal)
</code></pre>
<pre><code>## Warning: zorgverzekering could not be fit on page. It will not be plotted.
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
<p>As in the 'Corpus Analysis' howto, we can define a function to compute the term statistics to filter on informative words:</p>
<pre><code class="r">library(tm)
</code></pre>
<pre><code>## Loading required package: NLP
</code></pre>
<pre><code class="r">term.statistics <- function(dtm) {
dtm = dtm[row_sums(dtm) > 0,col_sums(dtm) > 0] # get rid of empty rows/columns
vocabulary = colnames(dtm)
data.frame(term = vocabulary,
characters = nchar(vocabulary),
number = grepl("[0-9]", vocabulary),
nonalpha = grepl("\\W", vocabulary),
termfreq = col_sums(dtm),
docfreq = col_sums(dtm > 0),
reldocfreq = col_sums(dtm > 0) / nDocs(dtm),
tfidf = tapply(dtm$v/row_sums(dtm)[dtm$i], dtm$j, mean) * log2(nDocs(dtm)/col_sums(dtm > 0)))
}
terms = term.statistics(m)
words = terms$term[order(-terms$tfidf)[1:10000]]
m_filtered = m[, colnames(m) %in% words]
m_filtered = m_filtered[row_sums(m_filtered) > 0,col_sums(m_filtered) > 0]
fit = LDA(m_filtered, k=10, method="Gibbs", control=list(iter=500, alpha=.5))
terms(fit, 10)
</code></pre>
<pre><code>## Topic 1 Topic 2 Topic 3 Topic 4
## [1,] "nee" "snelheid" "rtalsjehetziet" "peterrdev"
## [2,] "utrecht" "afwikkeling" "caravan" "cos6ypex2e7s"
## [3,] "ziyech" "bereikbaarheid" "uitzetten" "markhoekx"
## [4,] "nemo" "duidelijkheid" "tarieven" "bedenken"
## [5,] "goedemorgen" "vlotte" "verwerking" "hypotheken"
## [6,] "thanks" "afhandelen" "aanuit" "eindhoven"
## [7,] "briljantreclame" "correcte" "hond" "flexibel"
## [8,] "nvt" "eenvoudig" "bellenäò" "redelijke"
## [9,] "commercieel" "vriendelijkheid" "betalingen" "makkelijker"
## [10,] "sotsji" "nakomen" "maat" "nee"
## Topic 5 Topic 6 Topic 7
## [1,] "icoins" "prima" "peterrdev"
## [2,] "punten" "redelijk" "jorid"
## [3,] "klantvriendelijkste" "muts" "uitbetaling"
## [4,] "beoordeling" "helder" "gezeur"
## [5,] "moment" "desk" "fijne"
## [6,] "negatieve" "kut" "guuskuijer"
## [7,] "vlot" "beschikbaar" "verzekeringsmap"
## [8,] "cocnrn3f1sap" "eerlijke" "overzichtelijke"
## [9,] "verbeterpunten" "accountmanager" "woont"
## [10,] "verstuurd" "justronaldd" "cba"
## Topic 8 Topic 9 Topic 10
## [1,] "uitzetten" "moment" "prijs"
## [2,] "afspraak" "correcte" "klantvriendelijk"
## [3,] "duur" "korte" "kwaliteit"
## [4,] "prima" "sorry" "verhouding"
## [5,] "attent" "nette" "behulpzaam"
## [6,] "werknemer" "onlinemarketeer" "bereikbaarheid"
## [7,] "koersen" "terugkoppeling" "betrouwbaar"
## [8,] "correcte" "harte" "gemakkelijk"
## [9,] "noemen" "verzonden" "heldere"
## [10,] "flexibiliteit" "virupa" "carolien"
</code></pre>
<h2>Creating a topic model per sentiment category</h2>
<p>We can also make a topic model of a subset of the data, for example of all the negative reviews:</p>
<pre><code class="r">neg = d$CONTENT[!is.na(d$SENTIMENT) & d$SENTIMENT == -1]
m_neg = create_matrix(neg, removeStopwords=T, language="dutch")
m_neg = m_neg[row_sums(m_neg) > 0,col_sums(m_neg) > 0]
fit = LDA(m_neg, k=10, method="Gibbs", control=list(iter=500, alpha=.5))
terms(fit, 10)
</code></pre>
<pre><code>## Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
## [1,] "mail" "module" "eigen" "communicatie" "schade"
## [2,] "vraag" "maanden" "risico" "goed" "fbto"
## [3,] "antwoord" "lang" "betalen" "zeer" "keer"
## [4,] "email" "modules" "erg" "fbto" "wel"
## [5,] "telefonisch" "wachttijd" "bedrag" "slecht" "goed"
## [6,] "kreeg" "wel" "per" "slechte" "steeds"
## [7,] "contact" "weer" "wel" "afspraken" "vergoed"
## [8,] "ontvangen" "jaar" "euro" "telefonische" "zeker"
## [9,] "per" "per" "jaar" "bereikbaarheid" "afhandeling"
## [10,] "reactie" "vergoeding" "betaald" "personeel" "gebeld"
## Topic 6 Topic 7 Topic 8 Topic 9
## [1,] "alleen" "via" "fbto" "klant"
## [2,] "fbto" "website" "verzekering" "klanten"
## [3,] "graag" "wel" "wij" "verzekeringen"
## [4,] "duidelijk" "soms" "reisverzekering" "jullie"
## [5,] "klant" "beter" "jaar" "fbto"
## [6,] "zorgverzekering" "alle" "moeten" "nieuwe"
## [7,] "declaraties" "site" "wel" "jaar"
## [8,] "declaratie" "mensen" "auto" "korting"
## [9,] "kosten" "moeten" "gaan" "jaren"
## [10,] "overzicht" "internet" "onze" "jammer"
## Topic 10
## [1,] "premie"
## [2,] "prijs"
## [3,] "fbto"
## [4,] "verzekering"
## [5,] "erg"
## [6,] "duur"
## [7,] "verzekerd"
## [8,] "autoverzekering"
## [9,] "betere"
## [10,] "verzekeringen"
</code></pre>
<h2>Extracting the topics per document</h2>
<p>If you want to e.g. correlate topics with sentiment or add the topics as features to the machine learning, it is useful to extract which documents belong to which topic.
The <code>fit</code> object contains the needed information, which can be cast into a matrix:</p>
<pre><code class="r">library(reshape2)
assignments = data.frame(i=fit@wordassignments$i, j=fit@wordassignments$j, v=fit@wordassignments$v)
docsums = acast(assignments, i ~ v, value.var='j', fun.aggregate=length)
dim(docsums)
</code></pre>
<pre><code>## [1] 2228 10
</code></pre>
<pre><code class="r">head(docsums)
</code></pre>
<pre><code>## 1 2 3 4 5 6 7 8 9 10
## 1 0 0 0 0 0 0 3 1 0 2
## 2 0 0 0 0 0 0 0 0 0 1
## 3 0 0 1 0 13 0 0 4 0 8
## 4 1 0 0 0 0 0 4 2 8 0
## 5 24 0 0 6 9 2 0 0 0 0
## 6 0 0 1 1 1 13 7 3 0 0
</code></pre>
</body>
</html>