-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbetamax.py
333 lines (266 loc) · 11.1 KB
/
betamax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright (c) 2012, Sublime HQ Pty Ltd
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import io
import base64
import json
import cv2
import sys
import re
import os
import hashlib
import imageio.v3 as iio
from PIL import Image
from numpy import *
import scipy.ndimage as nd
from time import time
t = time()
t0 = time()
END_FRAME_PAUSE = 4000
SIMPLIFICATION_TOLERANCE = 512
MAX_PACKED_HEIGHT = 200000
def slice_size(a, b):
return (a.stop - a.start) * (b.stop - b.start)
def combine_slices(a, b, c, d):
return (slice(min(a.start, c.start), max(a.stop, c.stop)),
slice(min(b.start, d.start), max(b.stop, d.stop)))
def slices_intersect(a, b, c, d):
if (a.start >= c.stop): return False
if (c.start >= a.stop): return False
if (b.start >= d.stop): return False
if (d.start >= b.stop): return False
return True
# Combine a large set of rectangles into a smaller set of rectangles,
# minimising the number of additional pixels included in the smaller set of
# rectangles
def simplify(boxes, tol = 0):
out = []
for a,b in boxes:
sz1 = slice_size(a, b)
did_combine = False
for i in range(len(out)):
c,d = out[i]
cu, cv = combine_slices(a, b, c, d)
sz2 = slice_size(c, d)
if slices_intersect(a, b, c, d) or (slice_size(cu, cv) <= sz1 + sz2 + tol):
out[i] = (cu, cv)
did_combine = True
break
if not did_combine:
out.append((a,b))
if tol != 0:
return simplify(out, 0)
else:
return out
# Allocates space in the packed image. This does it in a slow, brute force
# manner.
class Allocator2D:
def __init__(self, rows, cols):
self.bitmap = zeros((rows, cols), dtype=uint8)
self.available_space = zeros(rows, dtype=uint32)
self.available_space[:] = cols
self.num_used_rows = 0
def allocate(self, w, h):
bh, bw = shape(self.bitmap)
for row in range(bh - h + 1):
if self.available_space[row] < w:
continue
for col in range(bw - w + 1):
if self.bitmap[row, col] == 0:
if not self.bitmap[row:row+h,col:col+w].any():
self.bitmap[row:row+h,col:col+w] = 1
self.available_space[row:row+h] -= w
self.num_used_rows = max(self.num_used_rows, row + h)
return row, col
raise RuntimeError("Allocation error")
def find_matching_rect(bitmap, num_used_rows, packed, src, sx, sy, w, h, packing_mode):
# Check if the number of used rows is less than the height of the template
if num_used_rows < h:
return None
# Extract the template and the relevant region from the packed image
template = src[sy:sy+h, sx:sx+w]
bh, bw = shape(bitmap)
image_region = packed[0:num_used_rows, 0:bw]
if packing_mode == 1.0:
result = cv2.matchTemplate(image_region, template, cv2.TM_CCOEFF_NORMED)
row,col = unravel_index(result.argmax(),result.shape)
if ((packed[row:row+h,col:col+w] == src[sy:sy+h,sx:sx+w]).all()
and (packed[row:row+1,col:col+w,0] == src[sy:sy+1,sx:sx+w,0]).all()):
return row,col
else:
return None
else:
# Check if the template or image region is empty
if template is None or template.shape[0] == 0 or template.shape[1] == 0:
print("Error: Template is empty.")
return None
if image_region is None or image_region.shape[0] == 0 or image_region.shape[1] == 0:
print("Error: Image region is empty.")
return None
# Use a single scale factor
scale = packing_mode
try:
# Calculate the destination size (dsize) for the resized images
dsize_template = (int(template.shape[1] * scale), int(template.shape[0] * scale))
dsize_image = (int(image_region.shape[1] * scale), int(image_region.shape[0] * scale))
if dsize_template[0] == 0 or dsize_template[1] == 0 or dsize_image[0] == 0 or dsize_image[1] == 0:
return None
# Resize the template and the image region
scaled_template = cv2.resize(template, dsize_template)
scaled_image = cv2.resize(image_region, dsize_image)
# Perform template matching
result = cv2.matchTemplate(scaled_image, scaled_template, cv2.TM_CCOEFF_NORMED)
# Find the location of the maximum correlation
row, col = unravel_index(result.argmax(), result.shape)
# Rescale the coordinates to the original image size
row, col = int(row / scale), int(col / scale)
# Check if the template matches the corresponding region in the packed image
if (
array_equal(packed[row:row+h, col:col+w], src[sy:sy+h, sx:sx+w])
and array_equal(packed[row:row+1, col:col+w, 0], src[sy:sy+1, sx:sx+w, 0])
):
return row, col
except Exception as e:
# Handle any exceptions (e.g., division by zero, invalid resize)
print(f"Error: {e}")
return None
def slice_tuple_size(s):
a, b = s
return (a.stop - a.start) * (b.stop - b.start)
def to_native(d):
if isinstance(d, dict):
return {k: to_native(v) for k, v in d.items()}
if isinstance(d, list):
return [to_native(i) for i in d]
if type(d).__module__ == 'numpy':
return to_native(d.tolist())
return d
def generate_animation(anim_name):
frames = []
set_printoptions(threshold=inf)
rex = re.compile("([0-9]+).png")
counter = 0
for f in os.listdir(anim_name):
m = re.search(rex, f)
if m:
frames.append((int(m.group(1)), anim_name + "/" + f))
frames.sort()
last_sha256 = None
images = []
times = []
for t, f in frames:
# Duplicate frames results in opencv terminating
# the process with a SIGKILL during matchTemplate
with open(f, 'rb') as h:
sha256 = hashlib.sha256(h.read()).digest()
if sha256 == last_sha256:
continue
last_sha256 = sha256
im = iio.imread(f)
height, width, _ = im.shape
if im.shape[2] == 4:
im = im[:,:,:3]
images.append(im)
times.append(t)
zero = images[0] - images[0]
pairs = zip([zero] + images[:-1], images)
diffs = [sign((b - a).max(2)) for a, b in pairs]
# Find different objects for each frame
img_areas = [nd.find_objects(nd.label(d)[0]) for d in diffs]
# The simplify function provided can be used to simplify a set of boxes (rectangles) by merging overlapping or adjacent boxes into larger composite boxes. The resulting simplified set of boxes aims to minimize the number of additional pixels included in the overall representation.
img_areas = [simplify(x, SIMPLIFICATION_TOLERANCE) for x in img_areas]
ih, iw, _ = shape(images[0])
# Generate a packed image
allocator = Allocator2D(MAX_PACKED_HEIGHT, iw)
packed = zeros((MAX_PACKED_HEIGHT, iw, 3), dtype=uint8)
# Sort the rects to be packed by largest size first, to improve the packing
rects_by_size = []
for i in range(len(images)):
src_rects = img_areas[i]
for j in range(len(src_rects)):
rects_by_size.append((slice_tuple_size(src_rects[j]), i, j))
rects_by_size.sort(reverse = True)
total_rects = len(rects_by_size)
allocs = [[None] * len(src_rects) for src_rects in img_areas]
print("%s packing, num rects: %d num frames: %s" % (anim_name, len(rects_by_size), len(images)))
t0 = time()
rc = 1
for size,i,j in rects_by_size:
print(f"{rc}/{total_rects}")
src = images[i]
src_rects = img_areas[i]
a, b = src_rects[j]
sx, sy = b.start, a.start
w, h = b.stop - b.start, a.stop - a.start
# See if the image data already exists in the packed image. This takes
# a long time, but results in worthwhile space savings (20% in one
# test)
existing = find_matching_rect(allocator.bitmap, allocator.num_used_rows, packed, src, sx, sy, w, h, 1.0)
if existing:
dy, dx = existing
allocs[i][j] = (dy, dx)
else:
result = allocator.allocate(w, h)
if result != None:
dy, dx = result
allocs[i][j] = (dy, dx)
packed[dy:dy+h, dx:dx+w] = src[sy:sy+h, sx:sx+w]
rc = rc + 1
print("%s packing finished, took: %fs" % (anim_name, time() - t0))
packed = packed[0:allocator.num_used_rows]
iio.imwrite(anim_name + "_packed_tmp.png", packed)
# Don't completely fail if we don't have pngcrush
if os.system("pngcrush -q " + anim_name + "_packed_tmp.png " + anim_name + "_packed.png") == 0:
os.system("rm " + anim_name + "_packed_tmp.png")
else:
print("pngcrush not found, unable to reduce filesize")
os.system("mv " + anim_name + "_packed_tmp.png " + anim_name + "_packed.png")
# Try to use pngquant since it can significantly reduce filesize for screencasts
# that don't include photos or other sources of many different colors
if os.system("pngquant -o " + anim_name + "_quant.png " + anim_name + "_packed.png") == 0:
os.system("mv " + anim_name + "_quant.png " + anim_name + "_packed.png")
else:
print("pngquant not found, unable to reduce filesize")
print(f"{times}")
# Generate JSON to represent the data
delays = (array(times[1:] + [times[-1] + END_FRAME_PAUSE]) - array(times)).tolist()
allocs = [[(0, 0) if item is None else item for item in sublist] for sublist in allocs]
print(f"{allocs}")
timeline = []
for i in range(len(allocs)):
src_rects = img_areas[i]
dst_rects = allocs[i]
blitlist = []
for j in range(len(src_rects)):
a, b = src_rects[j]
sx, sy = b.start, a.start
w, h = b.stop - b.start, a.stop - a.start
dy, dx = dst_rects[j]
blitlist.append([dx, dy, w, h, sx, sy])
timeline.append({'delay': delays[i], 'blit': blitlist})
print(f"{timeline}")
f = open('%s_anim.js' % anim_name, 'wb')
f.write(("%s_timeline = " % anim_name).encode('utf-8'))
f.write(json.dumps(to_native(timeline)).encode('utf-8'))
f.close()
if __name__ == '__main__':
generate_animation(sys.argv[1])