forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_to_checkpoint_loader.py
79 lines (69 loc) · 2.74 KB
/
save_to_checkpoint_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import os
from typing import Optional
# Set up argument parser
parser = argparse.ArgumentParser(description='Load and save a HuggingFace model.')
parser.add_argument('--model-name', type=str, required=True, help='Name of the model to load from HuggingFace model hub.')
# Parse arguments
args = parser.parse_args()
model_name = args.model_name
class VllmModelDownloader:
def __init__(self):
pass
def download_vllm_model(
self,
model_name: str,
torch_dtype: str,
tensor_parallel_size: int = 1,
pattern: Optional[str] = None,
max_size: Optional[int] = None,
):
import shutil
import torch
import gc
from tempfile import TemporaryDirectory
from huggingface_hub import snapshot_download
from vllm import LLM
def _run_writer(input_dir, output_dir):
llm_writer = LLM(
model=input_dir,
download_dir=input_dir,
dtype=torch_dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend="mp",
)
model_executer = llm_writer.llm_engine.model_executor
# TODO: change the `save_sharded_state` to `save_serverless_llm_state`
model_executer.save_serverless_llm_state(
path=output_dir, pattern=pattern, max_size=max_size
)
for file in os.listdir(input_dir):
if os.path.splitext(file)[1] not in (".bin", ".pt", ".safetensors"):
src_path = os.path.join(input_dir, file)
dest_path = os.path.join(output_dir, file)
if os.path.isdir(src_path):
shutil.copytree(src_path, dest_path)
else:
shutil.copy(src_path, output_dir)
del model_executer
del llm_writer
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
storage_path = os.getenv("MODEL_PATH", "./models")
output_dir = os.path.join(storage_path, model_name)
# create the output directory
os.makedirs(output_dir, exist_ok=True)
try:
with TemporaryDirectory() as cache_dir:
input_dir = snapshot_download(model_name, cache_dir=cache_dir)
_run_writer(input_dir, output_dir)
except Exception as e:
print(f"An error occurred while saving the model: {e}")
# remove the output dir
shutil.rmtree(output_dir)
raise e
torch_dtype = "float16"
downloader = VllmModelDownloader()
downloader.download_vllm_model(model_name, torch_dtype, 1)