-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathagent_differentiable.py
162 lines (124 loc) · 5.71 KB
/
agent_differentiable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
This module implements several agents in which the Q function is approximated
"""
from agent import IndQLearningAgentSoftmax, Level2QAgent
import numpy as np
import jax
import jax.numpy as jnp
from jax.experimental import optimizers
from jax.experimental import stax
from jax.experimental.stax import Dense, Relu, LogSoftmax
from numpy.random import choice
from scipy.special import softmax
from scipy.signal import convolve
def stable_softmax(x):
z = x - max(x)
numerator = np.exp(z)
denominator = np.sum(numerator)
softmax = numerator/denominator
return softmax
class RegressionIndQLearningSoftmax(IndQLearningAgentSoftmax):
def __init__(self, action_space, n_states, learning_rate, epsilon, gamma, enemy_action_space=None):
IndQLearningAgentSoftmax.__init__(self, action_space, n_states, learning_rate, epsilon, gamma, enemy_action_space)
# Regression weights
self.n_a = len(action_space)
self.w = 0.001*np.random.randn(9*4, len(action_space))
#self.grad_fn = jax.jit(jax.grad(Q_val))
def act(self, obs=None):
obs_flat = obs.flatten()
Q = np.dot(obs_flat, self.w)
p = stable_softmax(Q)
#print(Q)
#print(p)
#return np.argmax(np.dot(obs_flat, self.w))
return choice(self.action_space, p=p)
def update(self, obs, actions, rewards, new_obs):
"""The vanilla Q-learning update rule"""
a0, _ = actions
r0, _ = rewards
Qp = np.dot(new_obs.flatten(), self.w)
Q = np.dot(obs.flatten(), self.w)
#w_jax = jnp.array(self.w)
#grad = self.grad_fn(w_jax, obs, a0)[:, a0]
#print(grad)
grad = obs.flatten()
#print(grad)
#grad = np.clip(grad, -2, 2)
#print(grad.shape)
#print((r0 + self.gamma*jnp.max(Qp) - Q[a0]).shape)
self.w[:, a0] = self.w[:, a0] + self.alpha*(r0 + self.gamma*np.max(Qp) - Q[a0])*grad
#self.Q[obs, a0] = (1 - self.alpha)*self.Q[obs, a0] + self.alpha*(r0 + self.gamma*np.max(self.Q[new_obs, :]))
class DQN(IndQLearningAgentSoftmax):
def __init__(self, action_space, n_states, learning_rate, epsilon, gamma, enemy_action_space=None):
IndQLearningAgentSoftmax.__init__(self, action_space, n_states, learning_rate, epsilon, gamma, enemy_action_space)
# Regression weights
self.n_a = len(action_space)
self.w = 0.001*np.random.randn(9*4, len(action_space))
self.W1 = np.random.normal(0, 2 / np.sqrt(4*2 * 2), size=(4, 2, 2))
def relu(self, x):
return np.where(x>0,x,0)
def relu_prime(self, x):
return np.where(x>0,1,0)
def forward(self, W1, W2, obs, y):
l0 = np.einsum('ijk->kji', obs)
#l0 = obs[0, :, :]
l0_conv = convolve(l0, W1[::-1, ::-1], 'same', 'direct')
l1 = self.relu(l0_conv)
def act(self, obs=None):
self.forward(self.W1, self.W1, obs, None)
obs_flat = obs.flatten()
Q = np.dot(obs_flat, self.w)
p = stable_softmax(Q)
#print(Q)
#print(p)
#return np.argmax(np.dot(obs_flat, self.w))
return choice(self.action_space, p=p)
def update(self, obs, actions, rewards, new_obs):
"""The vanilla Q-learning update rule"""
a0, _ = actions
r0, _ = rewards
Qp = np.dot(new_obs.flatten(), self.w)
Q = np.dot(obs.flatten(), self.w)
#w_jax = jnp.array(self.w)
#grad = self.grad_fn(w_jax, obs, a0)[:, a0]
#print(grad)
grad = obs.flatten()
#print(grad)
#grad = np.clip(grad, -2, 2)
#print(grad.shape)
#print((r0 + self.gamma*jnp.max(Qp) - Q[a0]).shape)
self.w[:, a0] = self.w[:, a0] + self.alpha*(r0 + self.gamma*np.max(Qp) - Q[a0])*grad
#self.Q[obs, a0] = (1 - self.alpha)*self.Q[obs, a0] + self.alpha*(r0 + self.gamma*np.max(self.Q[new_obs, :]))
class RegressionLevel2QAgentSoftmax(Level2QAgent):
"""
A Q-learning agent that treats the other player as a level 1 agent.
She learns from other's actions, estimating their Q function.
She represents Q-values in a tabular fashion, i.e., using a matrix Q.
"""
def __init__(self, action_space, enemy_action_space, n_states, learning_rate, epsilon, gamma):
Level2QAgent.__init__(self, action_space, enemy_action_space, n_states, learning_rate, epsilon, gamma)
self.enemy = RegressionIndQLearningSoftmax(self.enemy_action_space, self.n_states,
learning_rate=self.alphaB, epsilon=self.epsilonB, gamma=self.gammaB)
self.w = 0.001*np.random.randn(9*4, len(action_space), len(enemy_action_space))
def act(self, obs=None):
b = self.enemy.act(obs)
obs_flat = obs.flatten()
Q = np.einsum('i,ijk->jk', obs_flat, self.w)[:, b]
#Q = np.dot(obs_flat, self.w)
p = stable_softmax(Q)
return choice(self.action_space, p=p)
def update(self, obs, actions, rewards, new_obs):
"""The vanilla Q-learning update rule"""
a, b = actions
rA, rB = rewards
self.enemy.update(obs, [b,a], [rB, rA], new_obs )
# We obtain opponent's next action using Q_B
bb = self.enemy.act(obs)
#Qp = np.dot(new_obs.flatten(), self.w)
Qp = np.einsum('i,ijk->jk', new_obs.flatten(), self.w)
#Q = np.dot(obs.flatten(), self.w)
Q = np.einsum('i,ijk->jk', obs.flatten(), self.w)
grad = obs.flatten()
# Finally we update the supported agent's Q-function
self.w[:, a, b] = self.w[:, a, b] + self.alphaA*(rA + self.gammaA*np.max(Qp[:, bb]) - Q[a, b])*grad
#self.QA[obs, a, b] = (1 - self.alphaA)*self.QA[obs, a, b] + self.alphaA*(rA + self.gammaA*np.max(self.QA[new_obs, :, bb]))