-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine.py
657 lines (492 loc) · 19.4 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
"""
This module implements several environments, i.e., the simulators in which agents will interact and learn.
Any environment is characterized by the following two methods:
* step : receives the actions taken by the agents, and returns the new state of the simulator and the rewards
perceived by each agent, amongst other things.
* reset : sets the simulator at the initial state.
"""
import numpy as np
class RMG():
"""
A two-agent environment for a repeated matrix (symmetric) game.
Possible actions for each agent are (C)ooperate (0) and (D)efect (1).
The state is s_t = (a_{t-1}, b_{t-1}) with a_{t-1} and b_{t-1} the actions of the two players in the last turn,
plus an initial state s_0.
"""
# Possible actions
NUM_AGENTS = 2
NUM_ACTIONS = 2
NUM_STATES = NUM_AGENTS*NUM_ACTIONS + 1 # we add the initial state.
def __init__(self, max_steps, payouts, batch_size=1):
self.max_steps = max_steps
self.batch_size = batch_size
self.payout_mat = payouts
self.available_actions = [
np.ones((batch_size, self.NUM_ACTIONS), dtype=int)
for _ in range(self.NUM_AGENTS)
]
self.step_count = None
def reset(self):
self.step_count = 0
init_state = np.zeros((self.batch_size, self.NUM_STATES))
init_state[:, -1] = 1
observations = [init_state, init_state]
info = [{'available_actions': aa} for aa in self.available_actions]
return observations, info
def step(self, action):
ac0, ac1 = action
self.step_count += 1
rewards = []
# The state is a OHE vector indicating [CC, CD, DC, DD, initial], (iff NUM_STATES = 5)
state0 = np.zeros((self.batch_size, self.NUM_STATES))
state1 = np.zeros((self.batch_size, self.NUM_STATES))
for i, (a0, a1) in enumerate(zip(ac0, ac1)): # iterates over batch dimension
rewards.append([self.payout_mat[a1][a0], self.payout_mat[a0][a1]])
state0[i, a0 * 2 + a1] = 1
state1[i, a1 * 2 + a0] = 1
rewards = list(map(np.asarray, zip(*rewards)))
observations = [state0, state1]
done = (self.step_count == self.max_steps)
info = [{'available_actions': aa} for aa in self.available_actions]
return observations, rewards, done, info
class AdvRw():
"""
A two-action stateless environment in which an adversary controls the reward
"""
def __init__(self, mode='friend', p=0.5):
self._mode = mode
# adversary estimation of our action
self._policy = np.asarray([0.5, 0.5])
self._learning_rate = 0.25
self._p = p # probability for the neutral environment
def reset(self):
# self._policy = np.asarray([0.5, 0.5])
return
def step(self, action):
if self._mode == 'friend':
if np.argmax(self._policy) == action:
reward = +50
else:
reward = -50
elif self._mode == 'adversary':
if np.argmax(self._policy) == action:
reward = -50
else:
reward = +50
elif self._mode == 'neutral':
box = np.random.rand() < self._p
if int(box) == action:
reward = +50
else:
reward = -50
self._policy = (self._learning_rate * np.array([1.0-action, action])
+ (1.0-self._learning_rate) * self._policy)
self._policy /= np.sum(self._policy)
# print('---')
#print('r', reward)
#print('p', self._policy)
# print('---')
return None, (reward, -reward), True, None
class AdvRw2():
"""
Friend or Foe modified to model adversary separately..
"""
def __init__(self, max_steps, payout=50, batch_size=1):
self.max_steps = max_steps
self.batch_size = batch_size
self.payout = payout
self.available_actions = np.array([0, 1])
self.step_count = 0
def reset(self):
self.step_count = 0
return
def step(self, action):
ac0, ac1 = action
self.step_count += 1
dm_reward = self.payout if ac0 == ac1 else -self.payout
rewards = [dm_reward, -dm_reward] # Assuming zero-sum...
observations = None
done = (self.step_count == self.max_steps)
return observations, rewards, done
#
class AdvRwGridworld():
"""
Friend or Foe modified to model adversary separately, with gridworld
"""
def __init__(self, max_steps, batch_size=1):
self.H = 4
self.W = 3
self.world = np.array([self.H, self.W]) # The gridworld
self.targets = np.array([[0, 0], [0, 2]]) # Position of the targets
self.DM = np.array([3, 1]) # Initial position of the DM
self.max_steps = max_steps
self.batch_size = batch_size
self.available_actions_DM = np.array(
[0, 1, 2, 3]) # Up, right, down, left
self.available_actions_Adv = np.array([0, 1]) # Select target 1 or 2.
self.step_count = 0
def reset(self):
self.step_count = 0
self.DM = np.array([3, 1])
return
def _coord2int(self, pos):
return pos[0] + self.H*pos[1]
def step(self, action):
ac_DM, ac_Adv = action
self.step_count += 1
if ac_DM == 0: # Up
self.DM[0] = np.maximum(0, self.DM[0] - 1)
elif ac_DM == 1: # Right
self.DM[1] = np.minimum(self.W - 1, self.DM[1] + 1)
elif ac_DM == 2: # Down
self.DM[0] = np.minimum(self.H - 1, self.DM[0] + 1)
elif ac_DM == 3: # Left
self.DM[1] = np.maximum(0, self.DM[1] - 1)
done = False
dm_reward = -1 # One step more
adv_reward = 0
# Check if DM is @ targets, then finish
if np.all(self.DM == self.targets[0, :]):
if ac_Adv == 0:
dm_reward += 50
adv_reward -= 50
else:
dm_reward -= 50
adv_reward += 50
done = True
if np.all(self.DM == self.targets[1, :]):
if ac_Adv == 1:
dm_reward += 50
adv_reward -= 50
else:
dm_reward -= 50
adv_reward += 50
done = True
# Check if step limit, then finish
if self.step_count == self.max_steps:
done = True
#dm_reward = self.payout if ac0 == ac1 else -self.payout
# rewards = [dm_reward, -dm_reward] #Assuming zero-sum...
#observations = None
#done = (self.step_count == self.max_steps)
return self._coord2int(self.DM), (dm_reward, adv_reward), done
class Blotto():
"""
Blotto game with multiple adversaries
"""
def __init__(self, max_steps, payout=50, batch_size=1, deterministic=True):
self.max_steps = max_steps
self.batch_size = batch_size
#self.payout = payout
self.available_actions = np.array([0, 1])
self.step_count = 0
self.deterministic = deterministic
def reset(self):
self.step_count = 0
return
def step(self, actions):
""" action[0] is that of the defender """
self.step_count += 1
num_attackers = len(actions) - 1
actions = np.asarray(actions)
att_rew = np.sum(actions[1:, ], axis=0)
tmp = actions[0, ] - att_rew
draw_pos = tmp == 0
if self.deterministic != True:
tmp[tmp == 0] = np.random.choice(
[-1, 1], size=len(tmp[tmp == 0]))*(actions[0, draw_pos] > 0)
ind = np.sum(actions, axis=0) > 0 ## to see in which position there was at least one resource
tmp = tmp*ind
tmp[tmp < 0] = -1 # Defender looses corresponding position
tmp[tmp > 0] = 1 # Defender wins corresponding position
# print('tmp', tmp)
reward_dm = tmp.sum()
tmp2 = actions[1:, ] - actions[0, ]
tmp2[tmp2 > 0] = 1
tmp2[tmp2 < 0] = -1
# print('tmp2', tmp2)
# s = np.sum(actions[1:, draw_pos], axis=0)
z = draw_pos & actions[1:, ]
z_new = z/z.sum(axis=0)
z_new = np.nan_to_num(z_new)
z_new = z_new*ind
# print('z_new', z_new)
#z_new = np.zeros_like(z_new)
z_new[:, draw_pos] = z_new[:, draw_pos]*np.sign(-tmp[draw_pos])
tmp2[z == 1.] = 0
# print('tmp2', tmp2)
z_new = tmp2 + z_new
# print('z-new', z_new)
# print('tmp2', tmp2)
rewards_atts = np.sum(z_new*(actions[1:, ] > 0), axis=1)
rewards = [reward_dm]
for r in rewards_atts:
rewards.append(r)
observations = None
done = (self.step_count == self.max_steps)
return observations, rewards, done
class modified_Blotto():
"""
Modified Blotto game with multiple adversaries (we just care about positions
where there has been some attack)
"""
def __init__(self, max_steps, payout=50, batch_size=1, deterministic=True):
self.max_steps = max_steps
self.batch_size = batch_size
#self.payout = payout
self.available_actions = np.array([0, 1])
self.step_count = 0
self.deterministic = deterministic
def reset(self):
self.step_count = 0
return
def step(self, actions):
""" action[0] is that of the defender """
self.step_count += 1
actions = np.asarray(actions)
## Defender's Reward
att_rew = np.sum(actions[1:, ], axis=0)
attacked_pos = att_rew > 0 ## indicates in which position attacks where performed
tmp = actions[0, ] - att_rew
tmp[np.logical_not(attacked_pos)] = 0.0
# Code non-deterministic case ??
tmp[tmp < 0] = -1 # Defender looses corresponding position
tmp[tmp > 0] = 1 # Defender wins corresponding position
reward_dm = tmp.sum()
## Attacker's Reward
tmp_att = -tmp
h = actions[1:] > 0
units = tmp_att / np.sum(h, axis=0)
units = np.nan_to_num(units)
rewards_att = h*units
rewards_atts = np.sum(rewards_att, axis=1)
rewards = [reward_dm]
for r in rewards_atts:
rewards.append(r)
observations = None
done = (self.step_count == self.max_steps)
return observations, rewards, done
class Urban():
"""
A two-agent environment for a urban resource allocation problem.
"""
def __init__(self):
# The state is designated by s = (s_0, s_1, s_2, s_3)
# s_0 represents wheter we are in the initial state or not
# s_i, i>0 represent whether the attack was successful on the site i.
self.state = np.array([1, 0, 0, 0])
self.step_count = 0
self.max_steps = 2 # as in the ARA for Urban alloc. paper
self.payoffs = np.array([1., 0.75, 2.]) # v_i from the paper
# Transition dynamics
# p(s_1_i = 1 | d1_i, a_i) for site i
self.p_s1_d1_a = np.array([[0, 0.85, 0.95],
[0, 0.6, 0.75],
[0, 0.3, 0.5],
[0, 0.05, 0.1],
[0, 0, 0.05]])
# p(s_2_i = 1 | s_1_i, d2_i) for site i
self.p_s2_s1_d2 = np.array([[0, 0, 0, 0, 0],
[1., 0.95, 0.8, 0.6, 0.4]])
self.n_sites = 3
self.k = 0.005
self.rho = 0.1
self.c_A = 10.
self.c_D = 10.
self.available_actions_DM = [i for i in range(5**self.n_sites)] # up to four units in each site
self.n_states = 2 ** (self.n_sites + 1)
def state2idx(self, state):
"""
In [19]: state = np.array([1, 0, 0, 1])
In [20]: state2idx(state)
Out[20]: 9
"""
pows = np.array([1 << i for i in range(len(state))[::-1]])
return np.dot(pows, state)
def idx2state(self, idx):
"""
In [28]: idx = 9
In [30]: idx2state(idx)
Out[30]: array([1, 0, 0, 1])
"""
return (idx & (1 << np.arange(len(self.state))) > 0).astype(int)
def actionDM2idx(self, a):
""" Now we have 3 sites, in which we can defend with up to 5 units. """
pows = np.array([5**i for i in range(self.n_sites)[::-1]])
return np.dot(pows, a)
def idx2actionDM(self, idx):
return list(map(int, (list(np.base_repr(idx, 5, padding=3))[-self.n_sites:])))
def valid_actionDM(self, state_idx, action_idx, prev_action_idx):
action = self.idx2actionDM(action_idx)
prev_action = self.idx2actionDM(prev_action_idx)
state = self.idx2state(state_idx)
if state[0] == 1: #initial state
#print('a', action)
return np.sum(action) == 4
else: # second move
#print('b', action, prev_action)
c1 = np.sum(action) == 4
c2 = action[0] <= prev_action[0] + prev_action[1]
c3 = action[1] <= prev_action[0] + prev_action[1] + prev_action[2]
c4 = action[2] <= prev_action[1] + prev_action[2]
return c1 & c2 & c3 & c4
def reset(self):
self.step_count = 0
self.state = np.array([1, 0, 0, 0])
return
def step(self, action):
# first action is that from the DM
ac0, ac1 = action
self.step_count += 1
if self.step_count == 1:
self.state = np.array([0, 0, 0, 0])
for i in range(self.n_sites):
p = self.p_s1_d1_a[ac0[i], ac1[i]]
u = np.random.rand()
if u <= p:
self.state[i + 1] = 1 # success
rewards = [0., 0.] # no rewards until end of episode
observations = self.state
done = False
return observations, rewards, done
elif self.step_count == 2: # end of episode
for i in range(self.n_sites):
p = self.p_s2_s1_d2[self.state[i+1], ac0[i]]
u = np.random.rand()
if u <= p:
self.state[i + 1] = 1 # success
done = True
observations = self.state
#print(np.dot(self.payoffs, self.state[1:]))
rewards = [- np.exp(self.c_D * self.rho * np.dot(self.payoffs, self.state[1:])),
np.exp(self.c_A * np.dot(self.payoffs,self.state[1:]) - np.sum(ac1 * self.k))]
return observations, rewards, done
class SimpleCoin():
"""
Simple Coin Game from LOLA paper, where state is just the color of the coin.
"""
def __init__(self, max_steps, batch_size=1):
self.max_steps = max_steps
self.batch_size = batch_size
self.available_actions = np.array([0, 1]) # 1 pick coin.
self.step_count = 0
self.state = 0 # initially, coin is red (for first player)
def reset(self):
self.step_count = 0
return
def step(self, action):
ac0, ac1 = action
self.step_count += 1
rewards = np.asarray([ac0, ac1]) # +1 point if thw agent picks coin.
# conflict
if ac0 and self.state == 1:
rewards[1] -= 2
if ac1 and self.state == 0:
rewards[0] -= 2
if np.random.rand() < 0.5:
self.state = 0
else:
self.state = 1
done = (self.step_count == self.max_steps)
return self.state, rewards, done
#
class CoinGame():
"""
Coin Game from LOLA paper, played over a NxN grid
"""
def __init__(self, max_steps=5, batch_size=1, tabular=True):
self.max_steps = max_steps
self.batch_size = batch_size
self.available_actions = np.array([0, 1, 2, 3]) # four directions to move. Agents pick up coins by moving onto the position where the coin is located
self.step_count = 0
self.N = 3
self.available_actions = np.array(
[0, 1])
self.available_actions_DM = np.array(
[0, 1, 2, 3])
self.available_actions_Adv = np.array(
[0, 1, 2, 3])
#self.state = np.zeros([4, self.N, self.N]) # blue player, red player, blue coin, red coin positions as OHE over grid.
self.blue_player = [1, 0]
self.red_player = [1, 2]
if (np.random.rand() < 0.0):
self.blue_coin = [0, 1]
self.red_coin = [2, 1]
else:
self.blue_coin = [2, 1]
self.red_coin = [0, 1]
self.tabular = tabular
def get_state(self):
o = np.zeros([4, self.N, self.N])
o[0,self.blue_player[0], self.blue_player[1]] = 1
o[1,self.red_player[0], self.red_player[1]] = 1
o[2,self.blue_coin[0], self.blue_coin[1]] = 1
o[3,self.red_coin[0], self.red_coin[1]] = 1
if self.tabular:
p1 = self.blue_player[0] + self.N*self.blue_player[1]
p2 = self.red_player[0] + self.N*self.red_player[1]
p3 = self.blue_coin[0] + self.N*self.blue_coin[1]
p4 = self.red_coin[0] + self.N*self.red_coin[1]
return int(p1 + (self.N)**2 * p2 + ((self.N)**2)**2 * p3 + ((self.N)**2)**3 * p4)
return o
def reset(self):
self.step_count = 0
# initial positions
self.blue_player = [1, 0]
self.red_player = [1, 2]
if (np.random.rand() < 0.0):
self.blue_coin = [0, 1]
self.red_coin = [2, 1]
else:
self.blue_coin = [2, 1]
self.red_coin = [0, 1]
return
def step(self, action):
ac0, ac1 = action
self.step_count += 1
reward_blue, reward_red = 0, 0
# agents move
if ac0 == 0: # up
self.blue_player[0] = np.maximum(self.blue_player[0] - 1, 0)
elif ac0 == 1: # right
self.blue_player[1] = np.minimum(self.blue_player[1] + 1, self.N-1)
elif ac0 == 2: # down
self.blue_player[0] = np.minimum(self.blue_player[0] + 1, self.N-1)
else:
self.blue_player[1] = np.maximum(self.blue_player[1] - 1, 0)
if ac1 == 0: # up
self.red_player[0] = np.maximum(self.red_player[0] - 1, 0)
elif ac1 == 1: # right
self.red_player[1] = np.minimum(self.red_player[1] + 1, self.N-1)
elif ac1 == 2: # down
self.red_player[0] = np.minimum(self.red_player[0] + 1, self.N-1)
else:
self.red_player[1] = np.maximum(self.red_player[1] - 1, 0)
# check coins
# if either agent picks coin, +1 for him
if self.blue_player == self.blue_coin:
if self.red_player == self.blue_coin:
reward_blue += 0.5
else:
reward_blue += 1
self.blue_coin = [-1, -1]
if self.red_player == self.red_coin:
if self.blue_player == self.red_coin:
reward_red += 0.5
else:
reward_red += 1
self.red_coin = [-1, -1]
if self.blue_player == self.red_coin:
if self.red_player == self.red_coin:
reward_blue += 0.5
else:
reward_blue += 1
self.red_coin = [-1, -1]
if self.red_player == self.blue_coin:
if self.blue_player == self.blue_coin:
reward_red += 0.5
else:
reward_red += 1
self.blue_coin = [-1, -1]
done = self.step_count == self.max_steps
return self.get_state(), np.array([reward_blue, reward_red]), done