forked from CellProfiler/CellProfiler-plugins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenhancedmeasuretexture.py
1057 lines (948 loc) · 47.3 KB
/
enhancedmeasuretexture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
<b>Enhanced Measure Texture</b> measures the degree and nature of textures within objects (versus smoothness)
<hr>
This module measures the variations in grayscale images. An object (or
entire image) without much texture has a smooth appearance; an
object or image with a lot of texture will appear rough and show a wide
variety of pixel intensities.
<p>This module can also measure textures of objects against grayscale images.
Any input objects specified will have their texture measured against <i>all</i> input
images specfied, which may lead to image-object texture combinations that are unneccesary.
If you do not want this behavior, use multiple <b>EnhancedMeasureTexture</b> modules to
specify the particular image-object measures that you want.</p>
<h4>Available measurements</h4>
<ul>
<li><i>Haralick Features:</i> Haralick texture features are derived from the
co-occurrence matrix, which contains information about how image intensities in pixels with a
certain position in relation to each other occur together. <b>EnhancedMeasureTexture</b>
can measure textures at different scales; the scale you choose determines
how the co-occurrence matrix is constructed.
For example, if you choose a scale of 2, each pixel in the image (excluding
some border pixels) will be compared against the one that is two pixels to
the right. <b>EnhancedMeasureTexture</b> quantizes the image into eight intensity
levels. There are then 8x8 possible ways to categorize a pixel with its
scale-neighbor. <b>EnhancedMeasureTexture</b> forms the 8x8 co-occurrence matrix
by counting how many pixels and neighbors have each of the 8x8 intensity
combinations. Thirteen features are then calculated for the image by performing
mathematical operations on the co-occurrence matrix (the forumulas can be found
<a href="http://murphylab.web.cmu.edu/publications/boland/boland_node26.html">here</a>):
<ul>
<li><i>H1:</i> Angular Second Moment</li>
<li><i>H2:</i> Contrast</li>
<li><i>H3:</i> Correlation</li>
<li><i>H4:</i> Sum of Squares: Variation</li>
<li><i>H5:</i> Inverse Difference Moment</li>
<li><i>H6:</i> Sum Average</li>
<li><i>H7:</i> Sum Variance</li>
<li><i>H8:</i> Sum Entropy</li>
<li><i>H9:</i> Entropy</li>
<li><i>H10:</i> Difference Variance</li>
<li><i>H11:</i> Difference Entropy</li>
<li><i>H12:</i> Information Measure of Correlation 1</li>
<li><i>H13:</i> Information Measure of Correlation 2</li>
</ul>
</li>
<li>
<i>Gabor "wavelet" features:</i> These features are similar to wavelet features,
and they are obtained by applying so-called Gabor filters to the image. The Gabor
filters measure the frequency content in different orientations. They are very
similar to wavelets, and in the current context they work exactly as wavelets, but
they are not wavelets by a strict mathematical definition. The Gabor
features detect correlated bands of intensities, for instance, images of
Venetian blinds would have high scores in the horizontal orientation.</li>
</ul>
<h3>Technical notes</h3>
<p><b>EnhancedMeasureTexture</b> performs the following algorithm to compute a score
at each scale using the Gabor filter:
<ul>
<li>Divide the half-circle from 0 to 180° by the number of desired
angles. For instance, if the user chooses two angles, EnhancedMeasureTexture
uses 0 and 90 ° (horizontal and vertical) for the filter
orientations. This is the Theta value from the reference paper.</li>
<li>For each angle, compute the Gabor filter for each object in the image
at two phases separated by 90° in order to account for texture
features whose peaks fall on even or odd quarter-wavelengths.</li>
<li>Multiply the image times each Gabor filter and sum over the pixels
in each object.</li>
<li>Take the square root of the sum of the squares of the two filter scores.
This results in one score per Theta.</li>
<li>Save the maximum score over all Theta as the score at the desired scale.</li>
</ul>
</p>
<h3>Changes from CellProfiler 1.0</h3>
CellProfiler 2.0 normalizes the co-occurence matrix of the Haralick features
per object by basing the intensity levels of the matrix on the maximum and
minimum intensity observed within each object. CellProfiler 1.0 normalizes
the co-occurrence matrix based on the maximum and minimum intensity observed
among all objects in each image. CellProfiler 2.0's measurements should be
more informative especially for objects whose maximum intensities vary
substantially because each object will have the full complement of levels;
in CellProfiler 1.0, only the brightest object would have the full dynamic
range. Measurements of Haralick features may differ substantially between
CellProfiler 1.0 and 2.0.
CellProfiler 1.0 constructs a single kernel for the Gabor filter operation, with
a fixed size of slightly less than the median radius of the objects in an image and
a single exponential fall-off based on this median radius. The texture of pixels not
covered by the kernel is not measured. In contrast, CellProfiler 2.0 performs a
vectorized calculation of the Gabor filter, properly scaled to the size of the
object being measured and covering all pixels in the object. CellProfiler 2.0's
Gabor filter can be calculated at a user-selected number of angles whereas
CellProfiler 1.0's Gabor filter is calculated only at angles of 0° and 90°.
References
<ul>
<li>Haralick et al. (1973), "Textural Features for Image
Classification," <i>IEEE Transaction on Systems Man, Cybernetics</i>,
SMC-3(6):610-621.</li>
<li>Gabor D. (1946). "Theory of communication,"
<i>Journal of the Institute of Electrical Engineers</i> 93:429-441.</li>
</ul>
"""
# CellProfiler is distributed under the GNU General Public License.
# See the accompanying file LICENSE for details.
#
# Copyright (c) 2003-2009 Massachusetts Institute of Technology
# Copyright (c) 2009-2012 Broad Institute
#
# Please see the AUTHORS file for credits.
#
# Website: http://www.cellprofiler.org
__version__ = "$Revision$"
import numpy as np
import scipy.ndimage as scind
import calculatemoments as cpmoments
import cellprofiler_core.module as cpm
import cellprofiler_core.object as cpo
import cellprofiler_core.setting as cps
import cellprofiler_core.measurement as cpmeas
from cellprofiler_core.constants.measurement import COLTYPE_FLOAT
from cellprofiler_core.setting.do_something import DoSomething
from cellprofiler_core.setting.multichoice import MultiChoice
from cellprofiler_core.setting.subscriber import ImageSubscriber, LabelSubscriber
from cellprofiler_core.setting.text import Integer
from cellprofiler_core.utilities.core.object import size_similarly
from centrosome.cpmorphology import fixup_scipy_ndimage_result as fix
from centrosome.haralick import Haralick, normalized_per_object
from centrosome.filter import gabor, stretch
"""The category of the per-object measurements made by this module"""
TEXTURE = 'Texture'
"""The "name" slot in the object group dictionary entry"""
OG_NAME = 'name'
"""The "remove"slot in the object group dictionary entry"""
OG_REMOVE = 'remove'
F_HARALICK = """AngularSecondMoment Contrast Correlation Variance
InverseDifferenceMoment SumAverage SumVariance SumEntropy Entropy
DifferenceVariance DifferenceEntropy InfoMeas1 InfoMeas2""".split()
F_GABOR = "Gabor"
H_HORIZONTAL = "Horizontal"
A_HORIZONTAL = "0"
H_VERTICAL = "Vertical"
A_VERTICAL = "90"
H_DIAGONAL = "Diagonal"
A_DIAGONAL = "45"
H_ANTIDIAGONAL = "Anti-diagonal"
A_ANTIDIAGONAL = "135"
H_ALL = [H_HORIZONTAL, H_VERTICAL, H_DIAGONAL, H_ANTIDIAGONAL]
H_TO_A = { H_HORIZONTAL: A_HORIZONTAL,
H_VERTICAL: A_VERTICAL,
H_DIAGONAL: A_DIAGONAL,
H_ANTIDIAGONAL: A_ANTIDIAGONAL }
F_TAMURA="Tamura"
F_1="Coarseness"
F_2="Contrast"
F_3="Directionality"
F_ALL=[F_1, F_2, F_3]
HIST_COARS_BINS=3
NB_SCALES=5
DIR_BINS=125
class EnhancedMeasureTexture(cpm.Module):
module_name = "EnhancedMeasureTexture"
variable_revision_number = 3
category = 'Measurement'
def create_settings(self):
"""Create the settings for the module at startup.
The module allows for an unlimited number of measured objects, each
of which has an entry in self.object_groups.
"""
self.image_groups = []
self.object_groups = []
self.scale_groups = []
self.image_count = cps.HiddenCount(self.image_groups)
self.object_count = cps.HiddenCount(self.object_groups)
self.scale_count = cps.HiddenCount(self.scale_groups)
self.add_image_cb(can_remove = False)
self.add_images = DoSomething("", "Add another image",
self.add_image_cb)
self.image_divider = cps.Divider()
self.add_object_cb(can_remove = True)
self.add_objects = DoSomething("", "Add another object",
self.add_object_cb)
self.object_divider = cps.Divider()
self.add_scale_cb(can_remove = False)
self.add_scales = DoSomething("", "Add another scale",
self.add_scale_cb)
self.scale_divider = cps.Divider()
self.wants_gabor = cps.Binary(
"Measure Gabor features?", True, doc =
"""The Gabor features measure striped texture in an object. They
take a substantial time to calculate. Check this setting to
measure the Gabor features. Uncheck this setting to skip
the Gabor feature calculation if it is not informative for your
images""")
self.gabor_angles = Integer("Number of angles to compute for Gabor",4,2, doc="""
<i>(Used only if Gabor features are measured)</i><br>
How many angles do you want to use for each Gabor texture measurement?
The default value is 4 which detects bands in the horizontal, vertical and diagonal
orientations.""")
self.gabor_divider = cps.Divider()
self.wants_tamura = cps.Binary(
"Measure Tamura features?", True, doc =
"""The Tamura features are very ugly.""")
self.tamura_feats=MultiChoice(
"Features to compute", F_ALL, F_ALL,
doc = """Tamura Features:
<p><ul>
<li><i>%(F_1)s</i> - bla.</li>
<li><i>%(F_2)s</i> - bla.</li>
<li><i>%(F_3)s</i> - bla.</li>
</ul><p>
Choose one or more features to compute.""" % globals())
def settings(self):
"""The settings as they appear in the save file."""
result = [self.image_count, self.object_count, self.scale_count]
for groups, elements in [(self.image_groups, ['image_name']),
(self.object_groups, ['object_name']),
(self.scale_groups, ['scale', 'angles'])]:
for group in groups:
for element in elements:
result += [getattr(group, element)]
result += [self.wants_gabor, self.gabor_angles]
result += [self.wants_tamura, self.tamura_feats]
return result
def prepare_settings(self,setting_values):
"""Adjust the number of object groups based on the number of
setting_values"""
for count, sequence, fn in\
((int(setting_values[0]), self.image_groups, self.add_image_cb),
(int(setting_values[1]), self.object_groups, self.add_object_cb),
(int(setting_values[2]), self.scale_groups, self.add_scale_cb)):
del sequence[count:]
while len(sequence) < count:
fn()
def visible_settings(self):
"""The settings as they appear in the module viewer"""
result = []
for groups, add_button, div in [(self.image_groups, self.add_images, self.image_divider),
(self.object_groups, self.add_objects, self.object_divider),
(self.scale_groups, self.add_scales, self.scale_divider)]:
for group in groups:
result += group.visible_settings()
result += [add_button, div]
result += [self.wants_gabor]
if self.wants_gabor:
result += [self.gabor_angles]
result+=[self.gabor_divider]
result += [self.wants_tamura]
if self.wants_tamura:
result += [self.tamura_feats]
return result
def add_image_cb(self, can_remove = True):
'''Add an image to the image_groups collection
can_delete - set this to False to keep from showing the "remove"
button for images that must be present.
'''
group = cps.SettingsGroup()
if can_remove:
group.append("divider", cps.Divider(line=False))
group.append('image_name',
ImageSubscriber("Select an image to measure","None",
doc="""
What did you call the grayscale images whose texture you want to measure?"""))
if can_remove:
group.append("remover", cps.do_something.RemoveSettingButton("", "Remove this image", self.image_groups, group))
self.image_groups.append(group)
def add_object_cb(self, can_remove = True):
'''Add an object to the object_groups collection
can_delete - set this to False to keep from showing the "remove"
button for objects that must be present.
'''
group = cps.SettingsGroup()
if can_remove:
group.append("divider", cps.Divider(line=False))
group.append('object_name',
LabelSubscriber("Select objects to measure","None", doc="""
What did you call the objects whose texture you want to measure?
If you only want to measure the texture
for the image overall, you can remove all objects using the "Remove this object" button.
<p>Objects specified here will have their
texture measured against <i>all</i> images specfied above, which
may lead to image-object combinations that are unneccesary. If you
do not want this behavior, use multiple <b>EnhancedMeasureTexture</b>
modules to specify the particular image-object measures that you want.</p>"""))
if can_remove:
group.append("remover", cps.do_something.RemoveSettingButton("", "Remove this object", self.object_groups, group))
self.object_groups.append(group)
def add_scale_cb(self, can_remove = True):
'''Add a scale to the scale_groups collection
can_delete - set this to False to keep from showing the "remove"
button for scales that must be present.
'''
group = cps.SettingsGroup()
if can_remove:
group.append("divider", cps.Divider(line=False))
group.append('scale',
Integer("Texture scale to measure",
len(self.scale_groups)+3,
doc="""You can specify the scale of texture to be measured, in pixel units;
the texture scale is the distance between correlated intensities in the image. A
higher number for the scale of texture measures larger patterns of
texture whereas smaller numbers measure more localized patterns of
texture. It is best to measure texture on a scale smaller than your
objects' sizes, so be sure that the value entered for scale of texture is
smaller than most of your objects. For very small objects (smaller than
the scale of texture you are measuring), the texture cannot be measured
and will result in a undefined value in the output file."""))
group.append('angles', MultiChoice(
"Angles to measure", H_ALL, H_ALL,
doc = """The Haralick texture measurements are based on the correlation
between pixels offset by the scale in one of four directions:
<p><ul>
<li><i>%(H_HORIZONTAL)s</i> - the correlated pixel is "scale" pixels
to the right of the pixel of interest.</li>
<li><i>%(H_VERTICAL)s</i> - the correlated pixel is "scale" pixels
below the pixel of interest.</li>
<li><i>%(H_DIAGONAL)s</i> - the correlated pixel is "scale" pixels
to the right and "scale" pixels below the pixel of interest.</li>
<li><i>%(H_ANTIDIAGONAL)s</i> - the correlated pixel is "scale"
pixels to the left and "scale" pixels below the pixel of interest.</li>
</ul><p>
Choose one or more directions to measure.""" % globals()))
if can_remove:
group.append("remover", cps.do_something.RemoveSettingButton("", "Remove this scale", self.scale_groups, group))
self.scale_groups.append(group)
def validate_module(self, pipeline):
"""Make sure chosen objects, images and scales are selected only once"""
images = set()
for group in self.image_groups:
if group.image_name.value in images:
raise cps.ValidationError(
"%s has already been selected" %group.image_name.value,
group.image_name)
images.add(group.image_name.value)
objects = set()
for group in self.object_groups:
if group.object_name.value in objects:
raise cps.ValidationError(
"%s has already been selected" %group.object_name.value,
group.object_name)
objects.add(group.object_name.value)
scales = set()
for group in self.scale_groups:
if group.scale.value in scales:
raise cps.ValidationError(
"%s has already been selected" %group.scale.value,
group.scale)
scales.add(group.scale.value)
def get_categories(self,pipeline, object_name):
"""Get the measurement categories supplied for the given object name.
pipeline - pipeline being run
object_name - name of labels in question (or 'Images')
returns a list of category names
"""
if any([object_name == og.object_name for og in self.object_groups]):
return [TEXTURE]
elif object_name == "Image":
return [TEXTURE]
else:
return []
def get_features(self):
'''Return the feature names for this pipeline's configuration'''
return F_HARALICK+([F_GABOR] if self.wants_gabor else [])+([F_TAMURA] if self.wants_tamura else [])
def get_measurements(self, pipeline, object_name, category):
'''Get the measurements made on the given object in the given category
pipeline - pipeline being run
object_name - name of objects being measured
category - measurement category
'''
if category in self.get_categories(pipeline, object_name):
return self.get_features()
return []
def get_measurement_images(self, pipeline, object_name, category, measurement):
'''Get the list of images measured
pipeline - pipeline being run
object_name - name of objects being measured
category - measurement category
measurement - measurement made on images
'''
measurements = self.get_measurements(pipeline, object_name, category)
if measurement in measurements:
return [x.image_name.value for x in self.image_groups]
return []
def get_measurement_scales(self, pipeline, object_name, category,
measurement, image_name):
'''Get the list of scales at which the measurement was taken
pipeline - pipeline being run
object_name - name of objects being measured
category - measurement category
measurement - name of measurement made
image_name - name of image that was measured
'''
if len(self.get_measurement_images(pipeline, object_name, category,
measurement)) > 0:
if measurement == F_GABOR:
return [x.scale.value for x in self.scale_groups]
if measurement == F_TAMURA:
return []
return sum([["%d_%s" % (x.scale.value, H_TO_A[h])
for h in x.angles.get_selections()]
for x in self.scale_groups], [])
return []
def get_measurement_columns(self, pipeline):
'''Get column names output for each measurement.'''
cols = []
for feature in self.get_features():
for im in self.image_groups:
if feature == F_TAMURA:
for f in F_ALL:
cols += [("Image",
'%s_%s_%s_%s' % (TEXTURE, feature,f,
im.image_name.value),
COLTYPE_FLOAT)]
for b in range(0,HIST_COARS_BINS):
cols += [("Image",
'%s_%s_CoarsenessHist_%dBinsHist_Bin%d_%s' % (TEXTURE, feature,
HIST_COARS_BINS,b,
im.image_name.value),
COLTYPE_FLOAT)]
else:
for sg in self.scale_groups:
if feature == F_GABOR:
cols += [("Image",
'%s_%s_%s_%d' % (TEXTURE, feature,
im.image_name.value,
sg.scale.value),
COLTYPE_FLOAT)]
else:
for angle in sg.angles.get_selections():
cols += [("Image",
'%s_%s_%s_%d_%s' % (
TEXTURE, feature, im.image_name.value,
sg.scale.value, H_TO_A[angle]),
COLTYPE_FLOAT)]
for ob in self.object_groups:
for feature in self.get_features():
for im in self.image_groups:
if feature == F_TAMURA:
for f in F_ALL:
cols += [(ob.object_name.value,
"%s_%s_%s_%s" % (
TEXTURE, feature, f, im.image_name.value),
COLTYPE_FLOAT)]
for b in range(0,HIST_COARS_BINS):
cols += [("Image",
'%s_%s_CoarsenessHist_%dBinsHist_Bin%d_%s' % (TEXTURE, feature,
HIST_COARS_BINS,b,
im.image_name.value),
COLTYPE_FLOAT)]
else:
for sg in self.scale_groups:
if feature == F_GABOR:
cols += [(ob.object_name.value,
"%s_%s_%s_%d" % (
TEXTURE, feature, im.image_name.value,
sg.scale.value),
COLTYPE_FLOAT)]
else:
for angle in sg.angles.get_selections():
cols += [(ob.object_name.value,
"%s_%s_%s_%d_%s" % (
TEXTURE, feature,
im.image_name.value,
sg.scale.value, H_TO_A[angle]),
COLTYPE_FLOAT)]
return cols
def is_interactive(self):
return False
def run(self, workspace):
"""Run, computing the area measurements for the objects"""
statistics = [["Image","Object","Measurement","Scale","Value"]]
for image_group in self.image_groups:
image_name = image_group.image_name.value
if self.wants_tamura:
statistics += self.run_image_tamura(image_name, workspace)
for object_group in self.object_groups:
object_name = object_group.object_name.value
statistics += self.run_one_tamura(image_name,
object_name,
workspace)
for scale_group in self.scale_groups:
scale = scale_group.scale.value
if self.wants_gabor:
statistics += self.run_image_gabor(image_name, scale, workspace)
for angle in scale_group.angles.get_selections():
statistics += self.run_image(image_name, scale, angle,
workspace)
for object_group in self.object_groups:
object_name = object_group.object_name.value
for angle in scale_group.angles.get_selections():
statistics += self.run_one(
image_name, object_name, scale, angle, workspace)
if self.wants_gabor:
statistics += self.run_one_gabor(image_name,
object_name,
scale,
workspace)
if workspace.frame is not None:
workspace.display_data.statistics = statistics
def display(self, workspace):
figure = workspace.create_or_find_figure(title="EnhancedMeasureTexture, image cycle #%d"%(
workspace.measurements.image_set_number),subplots=(1,1))
figure.subplot_table(0, 0, workspace.display_data.statistics,
ratio=(.20,.20,.20,.20,.20))
def run_one(self, image_name, object_name, scale, angle, workspace):
"""Run, computing the area measurements for a single map of objects"""
statistics = []
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
objects = workspace.get_objects(object_name)
pixel_data = image.pixel_data
if image.has_mask:
mask = image.mask
else:
mask = None
labels = objects.segmented
try:
pixel_data = objects.crop_image_similarly(pixel_data)
except ValueError:
#
# Recover by cropping the image to the labels
#
pixel_data, m1 = size_similarly(labels, pixel_data)
if np.any(~m1):
if mask is None:
mask = m1
else:
mask, m2 = size_similarly(labels, mask)
mask[~m2] = False
if np.all(labels == 0):
for name in F_HARALICK:
statistics += self.record_measurement(
workspace, image_name, object_name,
str(scale) + "_" + H_TO_A[angle], name, np.zeros((0,)))
else:
scale_i, scale_j = self.get_angle_ij(angle, scale)
for name, value in zip(F_HARALICK, Haralick(pixel_data,
labels,
scale_i,
scale_j,
mask=mask).all()):
statistics += self.record_measurement(
workspace, image_name, object_name,
str(scale) + "_" + H_TO_A[angle], name, value)
return statistics
def get_angle_ij(self, angle, scale):
if angle == H_VERTICAL:
return scale, 0
elif angle == H_HORIZONTAL:
return 0, scale
elif angle == H_DIAGONAL:
return scale, scale
elif angle == H_ANTIDIAGONAL:
return scale, -scale
def localmean(self, x, y, k, cum_sum):
nx=len(cum_sum[0])
ny=len(cum_sum)
hk = k / 2
startx = int(max(0, x - hk))
starty = int(max(0, y - hk))
stopx = int(min(nx-1, x + hk - 1))
stopy = int(min(ny-1, y + hk - 1))
if startx == 0: left=0.0
else: left=cum_sum[stopy,startx-1]
if starty == 0: up=0.0
else: up=cum_sum[starty-1,stopx]
if startx == 0 or starty == 0: upleft=0.0
else: upleft=cum_sum[starty-1,startx-1]
down=cum_sum[stopy,stopx]
area=(stopy-starty+1)*(stopx-startx+1)
mean=(down-left-up+upleft)/float(area)
return mean
def fast_local_mean(self, Lk, pixels, cum_sum):
'''Compute the local mean using the cumulative sum and matrix arithmetic
Lk - the sampling window (I reproduced what you had in the code
which makes an Lk of 2 be just the pixel, of 4 be a 3x3, etc.
pixels - the image
cum_sum - the cumulative sum of the pixels in both directions
'''
if Lk == 2:
# This is the value at the pixel, no neighborhood
return pixels
nx=len(pixels[0])
ny=len(pixels)
hLk = (Lk // 2)
result = np.zeros(pixels.shape, pixels.dtype)
result[hLk:-(hLk-1), hLk:-(hLk-1)] = \
((cum_sum[(Lk-1):, (Lk-1):] -
cum_sum[:-(Lk-1), (Lk-1):] -
cum_sum[(Lk-1):, :-(Lk-1)] +
cum_sum[:-(Lk-1), :-(Lk-1)]) /
((Lk - 1)* (Lk - 1)))
for x in list(range(0, hLk)) + list(range(nx-hLk+1, nx)):
for y in range(0, ny):
result[y, x] = self.localmean(x,y,Lk,cum_sum)
for x in range(hLk, nx-hLk+1):
for y in list(range(0, hLk)) + list(range(ny-hLk, ny)):
result[y, x] = self.localmean(x,y,Lk,cum_sum)
return result
def coarseness(self, pixels):
nx=len(pixels[0])
ny=len(pixels)
Ak=np.zeros([NB_SCALES,ny,nx])
Ekh=np.zeros([NB_SCALES,ny,nx])
Ekv=np.zeros([NB_SCALES,ny,nx])
Sbest=np.zeros([ny,nx])
cum_sum = np.cumsum(np.cumsum(pixels, 0), 1)
# 1st Step
Lk=1
for k in range(0, NB_SCALES):
Lk=Lk*2 # tamura.cpp
Ak[k, :, :] = self.fast_local_mean(Lk, pixels, cum_sum)
# 2nd Step
Lk=1
y, x = np.mgrid[0:ny, 0:nx]
for k in range(0, NB_SCALES):
Lk=Lk*2 # tamura.cpp
x_good = (x+(Lk/2)<nx) & (x-(Lk/2)>=0)
x1, y1 = x[x_good], y[x_good]
Ekh[k, y1, x1]=np.fabs(Ak[k,y1,x1+(Lk//2)]-Ak[k,y1,x1-(Lk//2)])
y_good = (y+(Lk/2)<ny) & (y-(Lk/2)>=0)
x1, y1 = x[y_good], y[y_good]
Ekv[k,y1,x1]=np.fabs(Ak[k,y1+(Lk//2),x1]-Ak[k,y1-(Lk//2),x1])
# 3rd Step
# Here, I compare the current k for the x / y grid to
# the current best.
for k in range(1, NB_SCALES):
new_best = Ekh[k, y, x] > Ekh[Sbest.astype(int), y, x]
Sbest[new_best] = k
# As in tamura.cpp: why 32?
#Fcoars=np.sum(Sbest)
#if nx==32 or ny==32:
# Fcoars=Fcoars/((nx+1-32)*(ny+1-32))
#else:
# Fcoars=Fcoars/((nx-32)*(ny-32))
# As in paper:
Fcoars=np.sum(Sbest)/(nx*ny)
hist, junk=np.histogram(Sbest,bins=HIST_COARS_BINS)
hist=np.array(hist, dtype=float)
hist=hist/max(hist)
return Fcoars, hist
def contrast(self, pixels):
std=np.std(pixels)
kurt=cpmoments.kurtosis(pixels)
if std<0.0000000001: Fcont=0.0
elif kurt<=0: Fcont=0.0
else: Fcont=std/np.power(kurt,0.25)
return Fcont
def directionality(self, pixels):
nx=len(pixels[0])
ny=len(pixels)
dH=np.array(pixels).copy()
dV=np.array(pixels).copy()
# Prewitt's
fH=np.array([[-1, 0, 1],[-1, 0, 1],[-1, 0, 1]])
fV=np.array([[1, 1, 1],[0, 0, 0],[-1, -1, -1]])
# Borders are zeros, just as in convolve2D
cH=np.zeros([ny, nx])
cV=np.zeros([ny, nx])
cH[1:len(cH)-1,1:len(cH[0])-1]=scind.filters.convolve(dH,fH,mode='constant')[1:len(cH)-1,1:len(cH[0])-1]
#sp.convolve2d(dH,fH,mode='valid')
cV[1:len(cV)-1,1:len(cV[0])-1]=scind.filters.convolve(dV,fV,mode='constant')[1:len(cV)-1,1:len(cV[0])-1]
#sp.convolve2d(dV,fV,mode='valid')
# Borders are not only zeros
#cH=np.zeros([ny, nx])
#cV=np.zeros([ny, nx])
#cH=scind.convolve(dH,fH,mode='constant')
#cV=scind.convolve(dV,fV,mode='constant')
theta=np.zeros([ny,nx])
rsum=0.0 # tamura.cpp
for y in range(0, ny):
for x in range(0, nx):
# Version tamura.cpp
if cH[y,x]>=0.0001:
theta[y,x]=np.arctan(cV[y,x]/cH[y,x])+(np.pi/2.0+0.001)
rsum=rsum+(cH[y,x]*cH[y,x])+(cV[y,x]*cV[y,x])+(theta[y,x]*theta[y,x])
else: theta[y,x]=0.0
# Version tamura.m
#if cH[y,x]==0 and cV[y,x]==0: theta[y,x]=0.0
#elif cH[y,x]==0: theta[y,x]=np.pi
#else: theta[y,x]=np.arctan(cV[y,x]/cH[y,x])+(np.pi/2.0)
# Version tamura.cpp
hist, junk=np.histogram(theta, bins=DIR_BINS)
bmx=hist.argmax()
hsum=0.0
for b in range(0, DIR_BINS):
hsum=hsum+(hist[b]*np.power(b+1-bmx,2))
Fdir=np.fabs(np.log(hsum/(rsum+0.0000001)))
# Version tamura.m
#phi=[float(i)/10000 for i in range(0,31416)]
#hist, junk=np.histogram(theta, bins=phi)
#hist=np.array(hist, dtype=float)
#hist=hist/(nx*ny)
#hist2=hist.copy()
#for b in range(0,len(hist2)):
# if hist[b]<0.01: hist2[b]=0
#bmx=hist2.argmax()
#phiP=bmx*0.0001
#Fdir=0.0
#for b in range(0,len(hist2)):
# Fdir=Fdir+(np.power(phi[b]-phiP,2)*hist2[b])
return Fdir
def run_image(self, image_name, scale, angle, workspace):
'''Run measurements on image'''
statistics = []
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
pixel_data = image.pixel_data
image_labels = np.ones(pixel_data.shape, int)
if image.has_mask:
image_labels[~ image.mask] = 0
scale_i, scale_j = self.get_angle_ij(angle, scale)
for name, value in zip(F_HARALICK, Haralick(pixel_data,
image_labels,
scale_i,
scale_j).all()):
statistics += self.record_image_measurement(
workspace, image_name, str(scale) + "_" + H_TO_A[angle],
name, value)
return statistics
def run_image_tamura(self, image_name, workspace):
'''Run measurements on image'''
statistics = []
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
pixel_data = image.pixel_data
image_labels = np.ones(pixel_data.shape, int)
if image.has_mask:
image_labels[~ image.mask] = 0
for name, fn in [(F_2, self.contrast),
(F_3, self.directionality)]:
value = fn(pixel_data)
statistics += self.record_image_measurement(
workspace, image_name, "-", "%s_%s" % (F_TAMURA, name), value)
value, hist = self.coarseness(pixel_data)
statistics += self.record_image_measurement(
workspace, image_name, "-", "%s_%s" % (F_TAMURA, F_1), value)
for b in range(0, HIST_COARS_BINS):
name = "CoarsenessHist_%dBinsHist_Bin%d" % (HIST_COARS_BINS, b)
value = hist[b]
statistics += self.record_image_measurement(
workspace, image_name, "-", "%s_%s" % (F_TAMURA, name), value)
return statistics
def run_one_tamura(self, image_name, object_name, workspace):
"""Run, computing the area measurements for a single map of objects"""
statistics = []
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
objects = workspace.get_objects(object_name)
pixel_data = image.pixel_data
if image.has_mask:
mask = image.mask
else:
mask = None
labels = objects.segmented
try:
pixel_data = objects.crop_image_similarly(pixel_data)
except ValueError:
#
# Recover by cropping the image to the labels
#
pixel_data, m1 = size_similarly(labels, pixel_data)
if np.any(~m1):
if mask is None:
mask = m1
else:
mask, m2 = size_similarly(labels, mask)
mask[~m2] = False
if np.all(labels == 0):
for name in F_ALL:
statistics += self.record_measurement(workspace, image_name,
object_name, "", "%s_%s" % (F_TAMURA, name),
np.zeros((0,)))
else:
labs=np.unique(labels)
values=np.zeros([np.max(labs)+1,2])
for l in labs:
if l!=0:
px = pixel_data
px[np.where(labels != l)] = 0.0
values[l,0]=self.contrast(px)
values[l,1]=self.directionality(px)
statistics += self.record_measurement(
workspace, image_name, object_name,
"-", "%s_%s" % (F_TAMURA, F_2), values[:,0])
statistics += self.record_measurement(
workspace, image_name, object_name,
"-", "%s_%s" % (F_TAMURA, F_3), values[:,1])
coars = np.zeros([np.max(labs)+1])
coars_hist=np.zeros([np.max(labs)+1,HIST_COARS_BINS])
for l in labs:
if l!=0:
px = pixel_data
px[np.where(labels != l)] = 0.0
coars[l], coars_hist[l,:] = self.coarseness(px)
statistics += self.record_measurement(
workspace, image_name, object_name,
"-", "%s_%s" % (F_TAMURA, F_1), coars)
for b in range(0,HIST_COARS_BINS):
value = coars_hist[1:,b]
name = "CoarsenessHist_%dBinsHist_Bin%d" % (HIST_COARS_BINS, b)
statistics += self.record_measurement(
workspace, image_name, object_name,
"-", "%s_%s" % (F_TAMURA, name) , value)
return statistics
def run_one_gabor(self, image_name, object_name, scale, workspace):
objects = workspace.get_objects(object_name)
labels = objects.segmented
object_count = np.max(labels)
if object_count > 0:
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
pixel_data = image.pixel_data
labels = objects.segmented
if image.has_mask:
mask = image.mask
else:
mask = None
try:
pixel_data = objects.crop_image_similarly(pixel_data)
if mask is not None:
mask = objects.crop_image_similarly(mask)
labels[~mask] = 0
except ValueError:
pixel_data, m1 = size_similarly(labels, pixel_data)
labels[~m1] = 0
if mask is not None:
mask, m2 = size_similarly(labels, mask)
labels[~m2] = 0
labels[~mask] = 0
pixel_data = normalized_per_object(pixel_data, labels)
best_score = np.zeros((object_count,))
for angle in range(self.gabor_angles.value):
theta = np.pi * angle / self.gabor_angles.value
g = gabor(pixel_data, labels, scale, theta)
score_r = fix(scind.sum(g.real, labels,
np.arange(object_count, dtype=np.int32)+ 1))
score_i = fix(scind.sum(g.imag, labels,
np.arange(object_count, dtype=np.int32)+ 1))
score = np.sqrt(score_r**2+score_i**2)
best_score = np.maximum(best_score, score)
else:
best_score = np.zeros((0,))
statistics = self.record_measurement(workspace,
image_name,
object_name,
scale,
F_GABOR,
best_score)
return statistics
def run_image_gabor(self, image_name, scale, workspace):
image = workspace.image_set.get_image(image_name,
must_be_grayscale=True)
pixel_data = image.pixel_data
labels = np.ones(pixel_data.shape, int)
if image.has_mask:
labels[~image.mask] = 0
pixel_data = stretch(pixel_data, labels > 0)
best_score = 0
for angle in range(self.gabor_angles.value):
theta = np.pi * angle / self.gabor_angles.value
g = gabor(pixel_data, labels, scale, theta)
score_r = np.sum(g.real)
score_i = np.sum(g.imag)
score = np.sqrt(score_r**2+score_i**2)
best_score = max(best_score, score)
statistics = self.record_image_measurement(workspace,
image_name,
scale,
F_GABOR,
best_score)
return statistics
def record_measurement(self, workspace,
image_name, object_name, scale,
feature_name, result):
"""Record the result of a measurement in the workspace's
measurements"""
data = fix(result)
data[~np.isfinite(data)] = 0
if scale == "-":
workspace.add_measurement(
object_name,
"%s_%s_%s" % (TEXTURE, feature_name, image_name), data)
statistics = [[image_name, object_name,
feature_name,scale,
"%f"%(d) if len(data) else "-"]
for d in data]
else:
workspace.add_measurement(
object_name,
"%s_%s_%s_%s" % (TEXTURE, feature_name,image_name, str(scale)),
data)
statistics = [[image_name, object_name,
"%s %s"%(aggregate_name, feature_name), scale,
"%.2f"%fn(data) if len(data) else "-"]
for aggregate_name, fn in (("min",np.min),
("max",np.max),
("mean",np.mean),
("median",np.median),
("std dev",np.std))]
return statistics