-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCustomer Testimonial Analysis.Rmd
354 lines (275 loc) · 15.4 KB
/
Customer Testimonial Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
---
title: "Customer 1st Order Satisfaction Analysis - Aug,2022"
author: "Linh Vo"
date: " Data is collected from 2022-08-01 to 2022-08-31"
output:
pdf_document:
latex_engine: xelatex
fig_width: 8
highlight: tango
---
```{r setup environment, include=FALSE}
install.packages("tidyverse")
install.packages("janitor")
install.packages("ggplot2")
install.packages("ggpubr")
install.packages("reactable")
install.packages("kableExtra")
library(knitr)
library(kableExtra)
library(reactable)
library(tidyverse)
library(readr)
library(janitor)
library(dplyr)
library(ggplot2)
library(ggpubr)
```
```{r import data, include=FALSE}
Survey <- read_csv("Survey.csv", na = "empty", show_col_types = FALSE)
head(Survey)
```
```{r cleaning data, include=FALSE}
Survey <- as.data.frame(Survey)
clean_names(Survey)
data <- Survey %>%
unite(col = 'cuisine_type',
c('Au','Nhat','Han','Viet','Khac'), sep ='', remove = TRUE)
```
## Overall summary
There are 64 customers attended to the survey.
```{r overall 1, echo=FALSE}
data %>% summarise(number_of_cust = n_distinct(SessionID))
```
**Customers' portrait:**
Most of our customers (49 out of 64) are serving Vietnamese Cuisine restaurants.
Veggies seller is stand for "sạp bán rau" which comes from Wet Market channel.
There are 5 customers who have greater than 1 store (Chain), the remaining is unique store.
```{r customer portrait, echo=FALSE}
data %>% group_by(cuisine_type) %>% summarise(number_of_cust = n_distinct(SessionID))
data %>% group_by(`Store Type`) %>% summarise(number_of_cust = n_distinct(`Store ID`))
```
### 1. Approaching Channel vs Cuisine Type
The most effective channel is direct approaching by Sales.
Comparison between SNS (Zalo, Facebook), Customers seem to know our business more through Facebook Ads.
```{r approaching channel, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Approaching Channel`, fill = cuisine_type)) +
geom_bar(stat="count") + coord_flip() +
scale_fill_brewer(palette="Spectral") +
theme_classic() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'),
plot.title = element_text(size = 10, face = "bold", color = "darkred")) +
ggtitle("Number of customers per Approaching Channel")
```
### 2. Tools & Customer Satisfaction vs Cuisine Type
Most of customers are satisfied with their 1st experience with our business.
However, there are 13 customers who were not really happy (Neutral) or even felt disappointed. (Dissatisfied). And most of them are selling Veggies and Vietnamese cuisine.
```{r Tools, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Tools`,y = cuisine_type, color = cuisine_type)) +
geom_count(show.legend = FALSE) + coord_flip() + facet_grid(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.y = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_text(size = 9, color = "black", face = "bold"),
axis.title.y = element_text(size = 9, color = "black", face = "bold")) +
labs(x = "Tools", y = "Cuisine Type")
```
### Let's take a look on the 6 measurement that CX used to verify customer satisfaction
We will group 64 customers into 4 segments depend on their satisfaction above:
- Dissatisfied
- Neutral
- Satisfied
- Very satisfied
We hope to figure out why they felt unhappy with Kamereo service by going through 6 measurement:
- Price
- Product quality
- Fulfillment rate
- Product variety
- Shipping service
- Customer service
#### 2.1 Price
As the graph shown, Price has slight correlation with the customer satisfaction.
Because unhappy customers seem to appear mostly in Dissatisfied group.
Otherwise, Very satisfied customers felt Very happy with our price.
There are some customers in Satisfied group felt unhappy with the price, but maybe price is not their main concern when choosing a supplier.
```{r price, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Price`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() + facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
*n is the count of customers related to each group*
#### 2.2 Product quality
Customers obviously felt dissatisfied with our product quality.
Unhappy statement appears in all 4 groups of customer.
**--\> It probably our product quality were truly not good in the past month.**
**--\> We need to improve our QC check more strictly to make guarantee to our product quality with customers.**
```{r prodcut quality, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Product quality`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() +facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
#### 2.3 Fulfillment rate
Almost customers felt satisfied with our fulfillment.
There is only one customer in Viet group felt unhappy but overall, they still felt satisfied with our service.
```{r fulfillment rate, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Fulfillment rate`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() + facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
#### 2.4 Product variety
Almost customers felt satisfied with our product variety.
There are 2 customers who felt unhappy. Their feedback for that is they need more FMGC products (toilet paper/tissue) and want to buy trứng vịt lộn item.
```{r product variety, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Product variety`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() + facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
#### 2.5 Customer service
So great!
All of our customers are happy with our Customer Service.
```{r customer service, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Customer service`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() + facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
#### 2.6 Shipping service
Two in a row!
No negative feedback for our Shipping service.
```{r shipping, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Shipping service`,y = cuisine_type, color = cuisine_type)) +
geom_count() + coord_flip() + facet_wrap(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_bw() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_text(size = 9, color = "darkred", face = "bold"),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm'))
```
### With their positive and negative satisfaction, will they place second order? and even increase their volume?
#### Second order?
As the graph below shown, even customers felt satisfied, they still not place second orders.
```{r second order, echo=FALSE}
data %>% ggplot(mapping = aes(x=`Will you order second time?`, fill = cuisine_type)) +
geom_bar() + facet_grid(vars(`Customer satisfaction`), scales = 'free') +
scale_fill_brewer(palette="Spectral") + theme_light() +
theme(strip.text.y = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm')) + ggtitle('Will you order second time?')
```
Let's review their comments to understand their point of view:
Their concerns are all about price and product quality.
```{r comments , echo=FALSE}
data_fb_no <- data %>% filter(`Will you order second time?` == 'No',
`Customer satisfaction` %in% c('Satisfied','Neutral')) %>%
select(`Store ID`, `Store Name`,`Customer satisfaction`,`Will you order second time?`,`Comments` )
data_fb_no <- arrange(data_fb_no, `Customer satisfaction`)
knitr::kable(data_fb_no, format="markdown")
```
#### Increasing volume?
There are 52 out of 64 customers who will place second order with us.
Let's check if they will increase their volume in the chart below:
```{r increasing volume , echo=FALSE}
data_fb_yes <- data %>% filter(`Will you order second time?` == 'Yes')
data_fb_yes %>% ggplot(mapping = aes(x=`Will you increase your volume?`, fill = cuisine_type)) +
geom_bar() +
scale_fill_brewer(palette="Spectral") + theme_light() +
theme(strip.text.x = element_text(size = 8, color = "darkblue", face = "bold"),
axis.text.x = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.text.y = element_text(color = "grey20",
size = 6, hjust = .5, vjust = .5, face = "plain"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "right", legend.title = element_text(size=8, color = "black", face = "bold"),
legend.text = element_text(size=8, color = "grey20", face = "plain"),
legend.key.size = unit(.5, 'cm')) + ggtitle('Will you increase your volume?')
```
Oh, There are 19 customer who will not increase their volume.
Let's review their comments:
```{r feedback, layout="l-body-outset", echo = FALSE}
data_fb_yes_no <- data_fb_yes %>% filter(`Will you increase your volume?` == 'No') %>%
select(`Store ID`, `Store Name`,`Customer satisfaction`,`Will you increase your volume?`,`Comments` )
knitr::kable(data_fb_yes_no, align ='lllll') %>%
kable_styling(full_width =T, font_size = 9)
```
And again, the most common reasons are price and product quality.
### Conclusion
In a nutshell, most of our customers were happy with their first experience at Kamereo.
However, to improve and increase our user retention, we must take more concentration on our price and product quality.
**Next Action:**
For Category Management team, as our CGO stated in Sales Sep strategy, we will increase personalized offer price via Sales rather than applying mass promotion.
For Product Quality issue, we will revamp and enhance the quality control with our suppliers and storage condition.