forked from formalize/coq-vyper
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFSet.v
1207 lines (1102 loc) · 34.7 KB
/
FSet.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From Coq Require Import Bool Setoid List NArith ZArith.
From Coq Require ListSet.
From Coq Require Import FSets.FSetAVL FSetFacts.
From Coq Require String HexString.
Require Import ListSet2 StringCmp.
(** A finite set class.
These axioms require convertibility to lists.
(see theories/Lists/ListSet.v from a Coq distribution).
See theories/MSet/MSetInterface.v for a module-based interface.
*)
Class class {M: Type} (E: forall x y: M, {x = y} + {x <> y}) (S: Type) := {
(** Convert a set to a list. The order may be arbitrary. *)
to_list: S -> list M;
(** A list produced by set_to_list may only include each element once. *)
to_list_nodup (s: S): NoDup (to_list s);
(** Build a set from a list. The list may contain duplicates. *)
from_list: list M -> S;
(** Membership test. *)
has: S -> M -> bool;
(** [has] may be computed from [to_list]. *)
has_to_list (x: M) (s: S):
has s x = ListSet.set_mem E x (to_list s);
(** A set obtained from [from_list] has the same members as the list. *)
has_from_list (x: M) (l: list M):
has (from_list l) x = ListSet.set_mem E x l;
(** An empty set. Could work faster than [from_list nil].
Note that there may be different empty sets even though they are all equivalent.
In particular, it might happen that that [empty <> from_list nil].
*)
empty: S;
empty_to_list: to_list empty = nil;
(** A set with a single element. Could work faster than [set_from_list (x :: nil)]. *)
singleton: M -> S;
singleton_to_list (x: M): to_list (singleton x) = x :: nil;
(** The number of elements in a set. Could work faster than [length (set_to_list s)]. *)
size_nat: S -> nat;
size_nat_to_list (s: S): size_nat s = length (to_list s);
(** A test for empty set. Could work faster than [set_size_nat =? 0]. *)
is_empty: S -> bool;
is_empty_to_list (s: S): is_empty s = true <-> to_list s = nil;
(** The number of elements in a set, the version with N.
Could work faster than [N_of_nat (set_size_nat _)].
*)
size: S -> N;
size_ok (s: S): size s = N_of_nat (size_nat s);
(** Add an item to a set. *)
add: S -> M -> S;
add_ok (s: S) (x: M) (y: M):
has (add s x) y = if E x y then true else has s y;
(** Remove an item from a set. *)
remove: S -> M -> S;
remove_ok (s: S) (x: M) (y: M):
has (remove s x) y = if E x y then false else has s y;
union: S -> S -> S;
union_ok (a b: S):
forall x: M,
has (union a b) x
=
orb (has a x) (has b x);
inter: S -> S -> S;
inter_ok (a b: S):
forall x: M,
has (inter a b) x
=
andb (has a x) (has b x);
diff: S -> S -> S;
diff_ok (a b: S):
forall x: M,
has (diff a b) x
=
andb (has a x) (negb (has b x));
for_all: S -> (M -> bool) -> bool;
for_all_ok (s: S) (p: M -> bool):
for_all s p = true
<->
forall x: M,
has s x = true -> p x = true;
(** A test for being a subset. *)
is_subset: S -> S -> bool;
is_subset_ok (little big: S):
is_subset little big = true
<->
forall x: M,
orb (negb (has little x)) (has big x) = true;
(** A test for set equality.
Note that two set_eq sets may not be equal in the sense of Coq's equality,
for example: when lists are used as sets, [0, 1] and [1, 0] are set_eq but not eq.
*)
equal: S -> S -> bool;
equal_ok (a b: S):
equal a b = true
<->
forall x: M,
has a x = has b x;
}.
Definition lists_as_sets {M: Type} (E: forall x y: M, {x = y} + {x <> y})
: class E {l: list M | NoDup l}
:= {|
to_list s := proj1_sig s;
to_list_nodup s := proj2_sig s;
from_list (l: list M) := exist _ (nodup E l) (NoDup_nodup E l);
has s x := nodup_list_in E x s;
has_to_list x l := eq_refl;
has_from_list := set_mem_nodup E;
empty := exist _ nil (NoDup_nil M);
empty_to_list := eq_refl;
singleton (x: M) := exist _ (x :: nil) (NoDup_cons x (@in_nil _ x) (NoDup_nil M));
singleton_to_list (x: M) := eq_refl;
size_nat s := length (proj1_sig s);
size_nat_to_list s := eq_refl;
is_empty s := list_is_empty (proj1_sig s);
is_empty_to_list s := list_is_empty_ok (proj1_sig s);
size s := N.of_nat (length (proj1_sig s));
size_ok s := eq_refl;
add s x := nodup_list_add E x s;
add_ok s x := nodup_list_add_ok E x s;
remove s x := nodup_list_remove E x s;
remove_ok s x := nodup_list_remove_ok E x s;
union := nodup_list_union E;
union_ok := nodup_list_union_ok E;
inter := nodup_list_inter E;
inter_ok := nodup_list_inter_ok E;
diff := nodup_list_diff E;
diff_ok := nodup_list_diff_ok E;
for_all := nodup_list_forall;
for_all_ok := nodup_list_forall_ok E;
is_subset := nodup_list_subset E;
is_subset_ok := nodup_list_subset_ok E;
equal := nodup_list_set_eq E;
equal_ok := nodup_list_set_eq_ok E;
|}.
(****************************************************************************************)
(* A set of strings based on FSetAVL. *)
Module StringAVLSet := FSetAVL.Make StringLexicalOrder.
Definition string_avl_set := StringAVLSet.t.
Lemma ina_in {A} (l: list A) (x: A):
SetoidList.InA eq x l <-> In x l.
Proof.
induction l; split; intro H; inversion H; subst; clear H; cbn; try tauto.
{ now constructor. }
rewrite<- IHl in *.
now apply SetoidList.InA_cons_tl.
Qed.
Lemma nodupa_nodup {A} (l: list A):
SetoidList.NoDupA eq l <-> NoDup l.
Proof.
induction l; split; intro H; inversion H; subst; clear H; cbn; try tauto; constructor.
{ rewrite<- ina_in. assumption. }
{ tauto. }
{ rewrite ina_in. assumption. }
{ tauto. }
Qed.
Lemma string_avl_set_to_list_nodup (s: string_avl_set):
NoDup (StringAVLSet.elements s).
Proof.
rewrite<- nodupa_nodup.
apply StringAVLSet.elements_3w.
Qed.
Lemma string_avl_set_in_to_list x l:
StringAVLSet.mem x l = ListSet.set_mem String.string_dec x (StringAVLSet.elements l).
Proof.
remember (StringAVLSet.mem x l) as m. destruct m; symmetry in Heqm; symmetry.
{
rewrite set_mem_true. rewrite<- ina_in.
apply StringAVLSet.elements_1.
now apply StringAVLSet.mem_2.
}
rewrite set_mem_false. rewrite<- ina_in.
intro H. apply StringAVLSet.elements_2 in H.
apply StringAVLSet.mem_1 in H.
rewrite Heqm in H. discriminate.
Qed.
Lemma string_avl_set_in_from_list x l:
StringAVLSet.mem x
(fold_right StringAVLSet.add StringAVLSet.empty l)
=
ListSet.set_mem String.string_dec x l.
Proof.
induction l. { trivial. }
remember (ListSet.set_mem _ _ _) as m.
symmetry in Heqm. destruct m.
{
apply StringAVLSet.mem_2 in IHl.
apply set_mem_true in Heqm.
assert (T: ListSet.set_mem String.string_dec x (a :: l) = true).
{
rewrite set_mem_true.
cbn. now right.
}
rewrite T. clear T.
apply StringAVLSet.mem_1.
cbn.
now apply StringAVLSet.add_2.
}
rewrite set_mem_false in Heqm.
match goal with
|- ?lhs = ?rhs => remember lhs as p
end.
cbn.
destruct String.string_dec as [EQ|NE].
{ subst. apply StringAVLSet.mem_1. now apply StringAVLSet.add_1. }
assert (F: p = false).
{
destruct p; trivial.
symmetry in Heqp.
apply StringAVLSet.mem_2 in Heqp.
cbn in Heqp.
apply StringAVLSet.add_3 in Heqp.
{
apply StringAVLSet.mem_1 in Heqp.
rewrite<- Heqp. rewrite<- IHl. trivial.
}
intro H.
symmetry in H.
contradiction.
}
rewrite F. symmetry. now apply set_mem_false.
Qed.
Lemma string_avl_set_empty_to_list s:
StringAVLSet.is_empty s = true <-> StringAVLSet.elements s = nil.
Proof.
split; intro H.
{
apply StringAVLSet.is_empty_2 in H.
unfold StringAVLSet.Empty in H.
remember (StringAVLSet.elements s) as e.
destruct e as [| h ]. { trivial. }
assert (Q: StringAVLSet.In h s).
{
apply StringAVLSet.elements_2.
rewrite ina_in.
rewrite<- Heqe.
now constructor.
}
exfalso. exact (H h Q).
}
apply StringAVLSet.is_empty_1.
unfold StringAVLSet.Empty.
intros x J. apply StringAVLSet.elements_1 in J. rewrite ina_in in J.
rewrite H in J. cbn in J. exact J.
Qed.
Lemma string_avl_set_add_ok x s y:
StringAVLSet.mem y (StringAVLSet.add x s)
=
if String.string_dec x y then true else StringAVLSet.mem y s.
Proof.
destruct (String.string_dec x y) as [EQ|NE].
{
apply StringAVLSet.mem_1.
apply StringAVLSet.add_1.
assumption.
}
remember (StringAVLSet.mem y s) as y_in.
symmetry in Heqy_in.
destruct y_in.
{
apply StringAVLSet.mem_2 in Heqy_in.
apply StringAVLSet.mem_1.
apply StringAVLSet.add_2.
assumption.
}
remember (StringAVLSet.mem y (StringAVLSet.add x s)) as f.
symmetry in Heqf. destruct f; trivial.
apply StringAVLSet.mem_2 in Heqf.
assert (J := StringAVLSet.add_3 NE Heqf).
apply StringAVLSet.mem_1 in J.
rewrite<- Heqy_in. rewrite<- J.
trivial.
Qed.
Lemma string_avl_set_remove_ok x s y:
StringAVLSet.mem y (StringAVLSet.remove x s)
=
if String.string_dec x y then false else StringAVLSet.mem y s.
Proof.
destruct (String.string_dec x y) as [EQ|NE].
{
remember (StringAVLSet.mem y _) as f. symmetry in Heqf. destruct f; trivial.
apply StringAVLSet.mem_2 in Heqf.
apply (StringAVLSet.remove_1 EQ) in Heqf.
contradiction.
}
remember (StringAVLSet.mem y s) as y_in.
symmetry in Heqy_in.
destruct y_in.
{
apply StringAVLSet.mem_2 in Heqy_in.
apply StringAVLSet.mem_1.
exact (StringAVLSet.remove_2 NE Heqy_in).
}
remember (StringAVLSet.mem y (StringAVLSet.remove x s)) as f.
symmetry in Heqf. destruct f; trivial.
apply StringAVLSet.mem_2 in Heqf.
assert (J := StringAVLSet.remove_3 Heqf).
apply StringAVLSet.mem_1 in J.
rewrite<- Heqy_in. rewrite<- J.
trivial.
Qed.
Lemma string_avl_set_union_ok a b x:
StringAVLSet.mem x (StringAVLSet.union a b) = StringAVLSet.mem x a || StringAVLSet.mem x b.
Proof.
remember (StringAVLSet.mem x (StringAVLSet.union a b)) as in_ab.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry in Heqin_ab. symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_ab; destruct in_a; destruct in_b; cbn; trivial; exfalso;
try apply StringAVLSet.mem_2 in Heqin_ab;
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b.
{
apply StringAVLSet.union_1 in Heqin_ab.
case Heqin_ab; intro H; apply StringAVLSet.mem_1 in H; rewrite H in *; easy.
}
{ now rewrite (StringAVLSet.mem_1 (StringAVLSet.union_2 b Heqin_a)) in Heqin_ab. }
{ now rewrite (StringAVLSet.mem_1 (StringAVLSet.union_2 b Heqin_a)) in Heqin_ab. }
now rewrite (StringAVLSet.mem_1 (StringAVLSet.union_3 a Heqin_b)) in Heqin_ab.
Qed.
Lemma string_avl_set_inter_ok a b x:
StringAVLSet.mem x (StringAVLSet.inter a b) = StringAVLSet.mem x a && StringAVLSet.mem x b.
Proof.
remember (StringAVLSet.mem x (StringAVLSet.inter a b)) as in_ab.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry in Heqin_ab. symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_ab; destruct in_a; destruct in_b; cbn; trivial; exfalso;
try apply StringAVLSet.mem_2 in Heqin_ab;
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b.
{
apply StringAVLSet.inter_2 in Heqin_ab.
apply StringAVLSet.mem_1 in Heqin_ab.
rewrite Heqin_ab in Heqin_b. discriminate.
}
{
apply StringAVLSet.inter_1 in Heqin_ab.
apply StringAVLSet.mem_1 in Heqin_ab.
rewrite Heqin_ab in Heqin_a. discriminate.
}
{
apply StringAVLSet.inter_1 in Heqin_ab.
apply StringAVLSet.mem_1 in Heqin_ab.
rewrite Heqin_ab in Heqin_a. discriminate.
}
now rewrite (StringAVLSet.mem_1 (StringAVLSet.inter_3 Heqin_a Heqin_b)) in Heqin_ab.
Qed.
Lemma string_avl_set_diff_ok a b x:
StringAVLSet.mem x (StringAVLSet.diff a b) = StringAVLSet.mem x a && negb (StringAVLSet.mem x b).
Proof.
remember (StringAVLSet.mem x (StringAVLSet.diff a b)) as in_ab.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry in Heqin_ab. symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_ab; destruct in_a; destruct in_b; cbn; trivial;
try apply StringAVLSet.mem_2 in Heqin_ab;
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b.
{ now apply StringAVLSet.diff_2 in Heqin_ab. }
{
apply StringAVLSet.diff_1 in Heqin_ab.
apply StringAVLSet.mem_1 in Heqin_ab.
rewrite Heqin_ab in Heqin_a. discriminate.
}
{
apply StringAVLSet.diff_1 in Heqin_ab.
apply StringAVLSet.mem_1 in Heqin_ab.
rewrite Heqin_ab in Heqin_a. discriminate.
}
apply StringAVLSet.diff_3 with (s' := b) in Heqin_a.
{
apply StringAVLSet.mem_1 in Heqin_a.
rewrite Heqin_ab in Heqin_a. discriminate.
}
intro H. apply StringAVLSet.mem_1 in H.
rewrite H in Heqin_b. discriminate.
Qed.
Lemma string_avl_set_forall_ok s (p: String.string -> bool):
StringAVLSet.for_all p s = true
<->
forall x,
StringAVLSet.mem x s = true -> p x = true.
Proof.
split; intro H.
{
apply StringAVLSet.for_all_2 in H.
{
intros x XIn.
unfold StringAVLSet.For_all in H.
apply StringAVLSet.mem_2 in XIn.
exact (H x XIn).
}
intros x y E. now subst.
}
apply StringAVLSet.for_all_1.
{ intros x y E. now subst. }
intros x XIn.
apply H.
now apply StringAVLSet.mem_1.
Qed.
Lemma string_avl_set_subset_ok a b:
StringAVLSet.subset a b = true
<->
forall x,
negb (StringAVLSet.mem x a) || StringAVLSet.mem x b = true.
Proof.
split; intro H.
{
apply StringAVLSet.subset_2 in H.
unfold StringAVLSet.Subset in H.
intro x.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_a; destruct in_b; cbn; trivial;
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b.
now rewrite (StringAVLSet.mem_1 (H _ Heqin_a)) in Heqin_b.
}
apply StringAVLSet.subset_1.
intros x InA.
apply StringAVLSet.mem_1 in InA.
apply StringAVLSet.mem_2.
assert (Q := H x).
rewrite InA in Q.
remember (StringAVLSet.mem x b) as in_b.
symmetry in Heqin_b. destruct in_b; trivial.
Qed.
Lemma string_avl_set_eq_ok a b:
StringAVLSet.equal a b = true
<->
forall x,
StringAVLSet.mem x a = StringAVLSet.mem x b.
Proof.
split; intro H.
{
intro x.
apply StringAVLSet.equal_2 in H.
unfold StringAVLSet.Equal in H.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry. symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_a; destruct in_b; cbn; trivial;
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b;
try discriminate.
{
rewrite (H x) in Heqin_a;
rewrite (StringAVLSet.mem_1 Heqin_a) in Heqin_b.
discriminate.
}
rewrite<- (H x) in Heqin_b.
rewrite (StringAVLSet.mem_1 Heqin_b) in Heqin_a.
discriminate.
}
apply StringAVLSet.equal_1.
unfold StringAVLSet.Equal.
intro x.
remember (StringAVLSet.mem x a) as in_a.
remember (StringAVLSet.mem x b) as in_b.
symmetry. symmetry in Heqin_a. symmetry in Heqin_b.
destruct in_a; destruct in_b; cbn; trivial;
try (rewrite (H x) in Heqin_a; rewrite Heqin_a in Heqin_b; discriminate);
try apply StringAVLSet.mem_2 in Heqin_a;
try apply StringAVLSet.mem_2 in Heqin_b;
try tauto.
split; intro Z; apply StringAVLSet.mem_1 in Z; rewrite Z in *; discriminate.
Qed.
(* 8.14: #[export] *)
Instance string_avl_set_impl: class String.string_dec string_avl_set
:= {|
to_list := StringAVLSet.elements;
to_list_nodup := string_avl_set_to_list_nodup;
from_list l := fold_right StringAVLSet.add StringAVLSet.empty l;
has s x := StringAVLSet.mem x s;
has_to_list := string_avl_set_in_to_list;
has_from_list := string_avl_set_in_from_list;
empty := StringAVLSet.empty;
empty_to_list := eq_refl;
singleton := StringAVLSet.singleton;
singleton_to_list s := eq_refl;
size_nat := StringAVLSet.cardinal;
size_nat_to_list := StringAVLSet.cardinal_1;
is_empty := StringAVLSet.is_empty;
is_empty_to_list := string_avl_set_empty_to_list;
size s := N.of_nat (StringAVLSet.cardinal s);
size_ok s := eq_refl;
add s x := StringAVLSet.add x s;
add_ok s x := string_avl_set_add_ok x s;
remove s x := StringAVLSet.remove x s;
remove_ok s x := string_avl_set_remove_ok x s;
union := StringAVLSet.union;
union_ok := string_avl_set_union_ok;
inter := StringAVLSet.inter;
inter_ok := string_avl_set_inter_ok;
diff := StringAVLSet.diff;
diff_ok := string_avl_set_diff_ok;
for_all s p := StringAVLSet.for_all p s;
for_all_ok := string_avl_set_forall_ok;
is_subset := StringAVLSet.subset;
is_subset_ok := string_avl_set_subset_ok;
equal := StringAVLSet.equal;
equal_ok := string_avl_set_eq_ok;
|}.
(****************************************************************************************)
Section SetFacts.
Context {M: Type} {E: forall x y: M, {x = y} + {x <> y}} {S: Type} {C: class E S}.
Lemma empty_ok (x: M):
has empty x = false.
Proof.
rewrite has_to_list.
rewrite empty_to_list; auto.
Qed.
Lemma singleton_ok (x y: M):
has (singleton x) y = true <-> x = y.
Proof.
rewrite has_to_list.
rewrite singleton_to_list.
cbn.
destruct E as [EQ|NE]. { symmetry in EQ. tauto. }
split; intro H. { congruence. }
symmetry in H. contradiction.
Qed.
Lemma singleton_iff (x y: M):
has (singleton x) y = if E x y then true else false.
Proof.
destruct E. { rewrite singleton_ok. exact e. }
remember (has _ _) as h. symmetry in Heqh. destruct h.
{ now rewrite singleton_ok in Heqh. }
trivial.
Qed.
Lemma is_empty_true (a: S) (H: is_empty a = true) (x: M):
has a x = false.
Proof.
rewrite has_to_list. rewrite is_empty_to_list in H.
rewrite H. trivial.
Qed.
Lemma is_empty_true_iff (a: S):
is_empty a = true <-> forall x, has a x = false.
Proof.
split. { apply is_empty_true. }
intro H.
rewrite is_empty_to_list.
remember (to_list a) as l.
destruct l as [|h]. { trivial. }
assert (Hh := H h).
rewrite has_to_list in Hh.
rewrite<- Heql in Hh.
cbn in Hh.
now destruct (E h h).
Qed.
Lemma is_empty_false (a: S) (H: is_empty a = false):
exists x: M,
has a x = true.
Proof.
remember (to_list a) as l.
destruct l.
{
symmetry in Heql. rewrite<- is_empty_to_list in Heql.
rewrite Heql in H. congruence.
}
exists m.
rewrite has_to_list.
rewrite<- Heql.
cbn. now destruct E.
Qed.
Lemma add_has (x: M) (s: S):
has (add s x) x = true.
Proof.
rewrite add_ok. now destruct E.
Qed.
Lemma is_subset_refl (a: S):
is_subset a a = true.
Proof.
rewrite is_subset_ok. intro x.
bool. destruct has; tauto.
Qed.
Lemma is_subset_equal (a b: S) (Eq: equal a b = true):
is_subset a b = true.
Proof.
rewrite is_subset_ok. rewrite equal_ok in Eq. intro x.
rewrite (Eq x).
destruct has; tauto.
Qed.
Lemma is_subset_trans {a b c: S}
(AB: is_subset a b = true)
(BC: is_subset b c = true):
is_subset a c = true.
Proof.
rewrite is_subset_ok in *. intro x.
assert (ABx := AB x).
assert (BCx := BC x).
bool.
destruct has; destruct has; destruct has; tauto.
Qed.
Lemma is_subset_antisym {a b: S}
(AB: is_subset a b = true)
(BC: is_subset b a = true):
equal a b = true.
Proof.
rewrite is_subset_ok in AB.
rewrite is_subset_ok in BC.
rewrite equal_ok. intro x.
assert (ABx := AB x).
assert (BCx := BC x).
bool.
destruct has; destruct has; trivial; case ABx; case BCx; try tauto;
intros; try tauto; symmetry; tauto.
Qed.
Lemma is_subset_if {a b: S}
(AB: is_subset a b = true)
(x: M)
(H: has a x = true):
has b x = true.
Proof.
assert (Ok := proj1 (is_subset_ok a b) AB x).
rewrite H in Ok. apply Ok.
Qed.
Lemma empty_subset {a: S}:
is_subset empty a = true.
Proof.
rewrite is_subset_ok.
intro x.
now rewrite empty_ok.
Qed.
Lemma add_subset (x: M) (s: S):
is_subset s (add s x) = true.
Proof.
rewrite is_subset_ok. intro y.
rewrite add_ok. bool. destruct (E x y); try tauto.
destruct has; tauto.
Qed.
Lemma union_subset_l (a b: S):
is_subset a (union a b) = true.
Proof.
rewrite is_subset_ok. intro x.
rewrite union_ok.
destruct has; now destruct has.
Qed.
Lemma union_subset_r (a b: S):
is_subset b (union a b) = true.
Proof.
rewrite is_subset_ok. intro x.
rewrite union_ok.
destruct has; now destruct has.
Qed.
Lemma union_subset_and (a b c: S):
is_subset (union a b) c = is_subset a c && is_subset b c.
Proof.
remember (is_subset a c) as ac. symmetry in Heqac.
remember (is_subset b c) as bc. symmetry in Heqbc.
destruct ac.
{ (* ac = true *)
rewrite is_subset_ok in Heqac.
rewrite andb_true_l.
destruct bc.
{ (* bc = true *)
rewrite is_subset_ok in Heqbc.
rewrite is_subset_ok.
intro x. assert (ACx := Heqac x). assert (BCx := Heqbc x).
rewrite union_ok.
destruct has; now destruct has.
}
(* bc = false *)
remember (is_subset (union a b) c) as f. symmetry in Heqf.
destruct f. 2:trivial.
rewrite is_subset_ok in Heqf.
enough (is_subset b c = true). { rewrite Heqbc in *. symmetry. assumption. }
rewrite is_subset_ok.
intro x. assert (ACx := Heqac x). assert (Fx := Heqf x).
rewrite union_ok in Fx.
destruct has; destruct has;
try rewrite orb_true_r in *;
try rewrite orb_false_r in *; trivial.
discriminate.
}
(* ac = false *)
rewrite andb_false_l.
remember (is_subset (union a b) c) as f. symmetry in Heqf.
destruct f. 2:trivial.
rewrite is_subset_ok in Heqf.
enough (is_subset a c = true). { rewrite Heqac in *. symmetry. assumption. }
rewrite is_subset_ok.
intro x. assert (Fx := Heqf x).
rewrite union_ok in Fx.
destruct has; destruct has;
try rewrite orb_true_r in *;
try repeat rewrite orb_false_r in *; trivial.
Qed.
Lemma add_subset_and (a b: S) (x: M):
is_subset (add a x) b = is_subset a b && has b x.
Proof.
remember (is_subset a b) as ab. symmetry in Heqab.
remember (has b x) as bx. symmetry in Heqbx.
destruct ab.
{
rewrite is_subset_ok in Heqab.
rewrite andb_true_l.
destruct bx.
{ (* bx = true *)
rewrite is_subset_ok.
intro y. assert (ABy := Heqab y).
rewrite add_ok.
destruct E; now subst.
}
remember (is_subset (add a x) b) as f. symmetry in Heqf.
destruct f. 2:trivial.
rewrite is_subset_ok in Heqf.
assert (ABx := Heqab x). assert (Fx := Heqf x).
destruct has; destruct has;
try rewrite orb_true_r in *;
try rewrite orb_false_r in *; trivial.
{ cbn in ABx. discriminate. }
rewrite add_has in Fx. cbn in Fx. discriminate.
}
remember (is_subset (add a x) b) as f. symmetry in Heqf.
destruct f. 2:trivial.
enough (AB: is_subset a b = true) by (rewrite Heqab in AB; discriminate).
clear Heqab.
rewrite is_subset_ok in Heqf. rewrite is_subset_ok.
intro y. assert (Fy := Heqf y). clear Heqf.
rewrite add_ok in Fy.
clear bx Heqbx.
destruct E.
{ cbn in Fy. rewrite Fy. apply orb_true_r. }
exact Fy.
Qed.
Lemma inter_subset_l (a b: S):
is_subset (inter a b) a = true.
Proof.
rewrite is_subset_ok. intro x.
rewrite inter_ok.
destruct has; now destruct has.
Qed.
Lemma inter_subset_r (a b: S):
is_subset (inter a b) b = true.
Proof.
rewrite is_subset_ok. intro x.
rewrite inter_ok.
destruct has; now destruct has.
Qed.
Lemma union_monotonic_l (a b c: S)
(H: is_subset a b = true):
is_subset (union a c) (union b c) = true.
Proof.
rewrite is_subset_ok in *. intro x.
repeat rewrite union_ok.
assert (Hx := H x). clear H.
destruct (has a x); destruct (has b x); destruct (has c x); tauto.
Qed.
Lemma union_monotonic_r (a b c: S)
(H: is_subset b c = true):
is_subset (union a b) (union a c) = true.
Proof.
rewrite is_subset_ok in *. intro x.
repeat rewrite union_ok.
assert (Hx := H x). clear H.
destruct (has a x); destruct (has b x); destruct (has c x); tauto.
Qed.
Lemma union_monotonic (a b c d: S)
(AB: is_subset a b = true)
(CD: is_subset c d = true):
is_subset (union a c) (union b d) = true.
Proof.
assert (Q: is_subset (union a c) (union a d) = true) by now apply union_monotonic_r.
apply (is_subset_trans Q).
now apply union_monotonic_l.
Qed.
Lemma inter_monotonic_l (a b c: S)
(H: is_subset a b = true):
is_subset (inter a c) (inter b c) = true.
Proof.
rewrite is_subset_ok in *. intro x.
repeat rewrite inter_ok.
assert (Hx := H x). clear H.
destruct (has a x); destruct (has b x); destruct (has c x); tauto.
Qed.
Lemma inter_monotonic_r (a b c: S)
(H: is_subset b c = true):
is_subset (inter a b) (inter a c) = true.
Proof.
rewrite is_subset_ok in *. intro x.
repeat rewrite inter_ok.
assert (Hx := H x). clear H.
destruct (has a x); destruct (has b x); destruct (has c x); tauto.
Qed.
Lemma inter_monotonic (a b c d: S)
(AB: is_subset a b = true)
(CD: is_subset c d = true):
is_subset (inter a c) (inter b d) = true.
Proof.
assert (Q: is_subset (inter a c) (inter a d) = true) by now apply inter_monotonic_r.
apply (is_subset_trans Q).
now apply inter_monotonic_l.
Qed.
End SetFacts.
Section SetUtils.
Context {M: Type} {E: forall x y: M, {x = y} + {x <> y}} {S: Type} {C: class E S}.
Definition filter (s: S) (f: M -> bool) := from_list (List.filter f (to_list s)).
Lemma filter_ok (s: S) (f: M -> bool) (x: M):
has (filter s f) x = has s x && f x.
Proof.
unfold filter.
rewrite has_from_list.
rewrite has_to_list.
induction to_list. { easy. }
cbn. remember (f a) as fa. destruct fa.
{
cbn. destruct (E x a). 2:assumption.
subst. now rewrite<- Heqfa.
}
rewrite IHl. destruct (E x a). 2: trivial.
subst. rewrite<- Heqfa. repeat rewrite Bool.andb_false_r. trivial.
Qed.
End SetUtils.
Section SetInject.
Context {A B: Type}
(EA: forall x y: A, {x = y} + {x <> y})
(EB: forall x y: B, {x = y} + {x <> y}) (SB: Type) (CB: class EB SB)
(inj: A -> B) (uninj: B -> A) (UninjInj: forall x: A, uninj (inj x) = x).
Definition inj_t := { s: SB | forall x, has s x = true -> inj (uninj x) = x }.
Definition SA := inj_t.
Lemma inj_to_list_nodup (s: SA):
NoDup (map uninj (to_list (proj1_sig s))).
Proof.
assert (P := proj2_sig s). cbn in P.
assert (W: map inj (map uninj (to_list (proj1_sig s))) = to_list (proj1_sig s)).
{
rewrite map_map.
assert (Q: forall x : B, ListSet.set_mem EB x (to_list (proj1_sig s)) = true -> inj (uninj x) = x).
{ intros. apply P. now rewrite has_to_list. }
remember (to_list (proj1_sig s)) as l. clear Heql P.
induction l. { easy. }
cbn. cbn in Q. assert (Qa := Q a). destruct (EB a a). 2:{ contradiction. }
rewrite (Qa eq_refl). f_equal. apply IHl.
intro b. assert (Qb := Q b). destruct (EB b a).
{ intro. apply (Qb eq_refl). }
exact Qb.
}
assert (D := to_list_nodup (proj1_sig s)).
rewrite<- W in D.
apply NoDup_map_inv in D. exact D.
Qed.
Lemma inj_from_list_helper (l: list A) (x: B):
has (from_list (map inj l)) x = true -> inj (uninj x) = x.
Proof.
rewrite has_from_list.
induction l. { easy. }
cbn.
destruct (EB x (inj a)). { subst x. now rewrite UninjInj. }
apply IHl.
Qed.
Lemma inj_has_to_list (x: A) (s: SA):
has (proj1_sig s) (inj x) = ListSet.set_mem EA x (map uninj (to_list (proj1_sig s))).
Proof.
assert (P := proj2_sig s). cbn in P.
rewrite (has_to_list (inj x) (proj1_sig s)).
assert (Q: forall x : B, ListSet.set_mem EB x (to_list (proj1_sig s)) = true -> inj (uninj x) = x).
{ intros. apply P. now rewrite has_to_list. }
remember (to_list (proj1_sig s)) as l. clear Heql P.
induction l. { easy. }
cbn. destruct (EB (inj x) a).
{ subst a. rewrite UninjInj. now destruct (EA x x). }
destruct (EA x (uninj a)).
{ subst x. assert (Qa := Q a). cbn in Qa. destruct (EB a a); tauto. }
apply IHl. intro b.
assert (Qb := Q b). cbn in Qb. destruct (EB b a); subst; tauto.
Qed.
Lemma inj_has_from_list (x: A) (l: list A):
has (from_list (map inj l)) (inj x) = ListSet.set_mem EA x l.
Proof.
rewrite has_from_list.
induction l. { easy. }
cbn.
destruct (EA x a) as [EQA|NEA]. { subst x. now destruct EB. }
destruct EB as [EQB|NEB]. 2:apply IHl.
rewrite<- (UninjInj x) in NEA.
rewrite<- (UninjInj a) in NEA.
rewrite EQB in NEA.
contradiction.
Qed.
Lemma inj_empty_helper (x: B):
has empty x = true -> inj (uninj x) = x.
Proof.
intro H.
rewrite empty_ok in H.
discriminate.
Qed.
Lemma inj_empty_to_list:
map uninj (to_list empty) = nil.
Proof.
now rewrite empty_to_list.
Qed.
Lemma inj_singleton_helper (x: A) (y: B):
has (singleton (inj x)) y = true -> inj (uninj y) = y.
Proof.
rewrite singleton_ok. intro. subst y. now rewrite UninjInj.
Qed.
Lemma inj_singleton_to_list (x: A):
map uninj (to_list (singleton (inj x))) = x :: nil.
cbn.
rewrite singleton_to_list. cbn. now rewrite UninjInj.
Qed.
Lemma inj_size_nat_to_list (s: SA):
size_nat (proj1_sig s) = length (map uninj (to_list (proj1_sig s))).
Proof.
rewrite size_nat_to_list.
now rewrite map_length.
Qed.
Lemma inj_is_empty_to_list (s: SA):
is_empty (proj1_sig s) = true <-> map uninj (to_list (proj1_sig s)) = nil.
Proof.
rewrite is_empty_to_list.
now destruct to_list.
Qed.
Lemma inj_size_ok (s: SA):