-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlidargen.py
230 lines (173 loc) · 11.4 KB
/
lidargen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import sys
sys.path.append('rangenetpp/lidar_bonnetal_master/train/tasks/semantic')
sys.path.append('rangenetpp/lidar_bonnetal_master/train/')
import metrics.fid.lidargen_fid as lidargen_fid
import metrics.histogram.mmd as mmd
import argparse
import os
import torch
import metrics.mae as lidargen_mae
import metrics.iou as lidargen_iou
import metrics.histogram.jsd as jsd
import rangenetpp.lidar_bonnetal_master.train.tasks.semantic.infer_lib as rangenetpp
import glob
def generate_kitti_fid(folder_fid, folder_segmentations, sample_count, seed=0):
# Get dump for KITTI
os.system("rm -r {folder_segmentations}".format(folder_segmentations=folder_segmentations))
os.system("rm -r {folder_fid}".format(folder_fid=folder_fid))
os.system("mkdir {folder_segmentations}".format(folder_segmentations=folder_segmentations))
os.system("mkdir {folder_fid}".format(folder_fid=folder_fid))
rangenetpp.main('--dataset ignore --model rangenetpp/lidar_bonnetal_master/darknet53-1024/ --kitti --output_dir {folder_segmentations} --frd_dir {folder_fid} --kitti_count {kitti_count} --seed {seed}'.format(
kitti_count=str(sample_count), seed=str(seed), folder_segmentations=folder_segmentations, folder_fid=folder_fid))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train", help="Train model. Requires --config and --exp", action="store_true")
parser.add_argument("--sample", help="Generate unconditional samples from model.", action="store_true")
parser.add_argument("--densification", help="Generate densification experiment samples.", action="store_true")
# Unconditional Stats
parser.add_argument("--visualize_samples", help="Generate top down visualizations of generated samples")
parser.add_argument("--fid", help="Run generated samples through RangeNet to get FID (KITTI only).", action="store_true")
parser.add_argument("--mmd", help="Calculate MMD between samples and KITTI-360", action="store_true")
parser.add_argument("--jsd", help="Caculate JSD between samples and KITTI-360", action="store_true")
# Densification Stats
parser.add_argument("--iou", help="Run RangeNet++ IOU downstream comparison of LiDARGen upsampling with nearest neighbor", action="store_true")
parser.add_argument("--mae", help="Get MAE (Range Representation) for upsampling with LiDARGen, Bicubic, and Nearest Neighbors", action="store_true")
# General
parser.add_argument("--config", help="Config to be used for sampling.")
parser.add_argument("--exp", help="The experiment name. If using pretrained model, set to provided folder name.")
parser.add_argument("--samples", help="Number of samples", type=int, default=8)
# Manually provide folders
parser.add_argument("--fid_folder1", help="Manually provide folder1", type=str, default=None)
parser.add_argument("--fid_folder2", help="Manually provide folder2", type=str, default=None)
parser.add_argument("--folder_name", help="Folder name for manual generation", type=str, default=None)
parser.add_argument("--fid_pointcloud", help="Dump features for folder of .npy point clouds into --folder_name", type=str, default=None)
args = parser.parse_args()
if ((args.config is None or args.exp is None) and (args.fid_folder1 is None) and (args.fid_pointcloud is None)):
print('--config and --exp flags are required. See --help for more information')
return
if (args.train):
# Train the model...
os.system('python LiDARGen/main.py --ni --exp {exp} --config {cfg}'.format(
exp=str(args.exp), cfg=str(args.config)))
if (args.sample):
# Do sampling
desired_samples = args.samples
current_index = 0
seed = 0
os.system('mkdir ' + str(args.exp) + '/unconditional_samples')
os.system('python LiDARGen/main.py --ni --sample --exp ' + args.exp + ' --config ' + args.config + ' --seed ' + str(seed))
sample_1 = torch.load(str(args.exp) + '/image_samples/images/samples.pth')
count_per_sample = sample_1.shape[0]
for i in range(0, count_per_sample):
torch.save(sample_1[i], str(
args.exp) + '/unconditional_samples/' + str(current_index) + '.pth')
current_index = current_index + 1
seed = seed + 1
while(current_index < desired_samples):
os.system('python LiDARGen/main.py --ni --sample --exp ' + args.exp + ' --config ' + args.config + ' --seed ' + str(seed))
sample = torch.load(str(args.exp) + '/image_samples/images/samples.pth')
count_per_sample = sample_1.shape[0]
for i in range(0, count_per_sample):
torch.save(sample[i], str(args.exp) + '/unconditional_samples/' + str(current_index) + '.pth')
current_index = current_index + 1
seed = seed + 1
if (args.densification):
# Densified sampling
desired_samples = args.samples
current_index = 0
seed = 0
os.system('rm -r ' + str(args.exp) + '/densification_result')
os.system('rm -r ' + str(args.exp) + '/densification_target')
os.system('mkdir ' + str(args.exp) + '/densification_result')
os.system('mkdir ' + str(args.exp) + '/densification_target')
os.system('python LiDARGen/main.py --ni --densification --sample --exp ' + args.exp + ' --config ' + args.config + ' --seed ' + str(seed))
sample_result = torch.load(str(args.exp) + '/image_samples/images/densify_samples_result.pth')
sample_target = torch.load(str(args.exp) + '/image_samples/images/densify_samples_target.pth')
count_per_sample = sample_result.shape[0]
for i in range(0, count_per_sample):
torch.save(sample_result[i], str(args.exp) + '/densification_result/' + str(current_index) + '.pth')
torch.save(sample_target[i], str(args.exp) + '/densification_target/' + str(current_index) + '.pth')
current_index = current_index + 1
seed = seed+1
while(current_index < desired_samples):
os.system('python LiDARGen/main.py --ni --densification --sample --exp ' +
args.exp + ' --config ' + args.config + ' --seed ' + str(seed))
sample_result = torch.load(
str(args.exp) + '/image_samples/images/densify_samples_result.pth')
sample_target = torch.load(
str(args.exp) + '/image_samples/images/densify_samples_target.pth')
count_per_sample = sample_result.shape[0]
for i in range(0, count_per_sample):
torch.save(sample_result[i], str(args.exp) + '/densification_result/' + str(current_index) + '.pth')
torch.save(sample_target[i], str(args.exp) + '/densification_target/' + str(current_index) + '.pth')
current_index = current_index + 1
seed = seed+1
if(args.fid):
folder1 = ""
folder2 = ""
if((not (args.fid_folder1 is None)) and (not (args.fid_folder2 is None))):
folder1 = args.fid_folder1
folder2 = args.fid_folder2
elif (not (args.fid_folder1 is None)):
folder1 = args.fid_folder1
folder2 = "kitti_fid"
folder_segmentations = "kitti_seg"
generate_kitti_fid(folder2, folder_segmentations, 1000, 0)
else:
# Get dump for model samples
os.system("rm -r {exp}/unconditional_fid".format(exp=args.exp))
os.system("mkdir {exp}/unconditional_fid".format(exp=args.exp))
os.system("rm -r {exp}/unconditional_segmentations".format(exp=args.exp))
os.system("mkdir {exp}/unconditional_segmentations".format(exp=args.exp))
rangenetpp.main('--dataset ignore --model rangenetpp/lidar_bonnetal_master/darknet53-1024/ --dump {exp}/unconditional_samples --output_dir {exp}/unconditional_segmentations --frd_dir {exp}/unconditional_fid'.format(exp=str(args.exp)))
# Get dump for model samples
sample_count = len(glob.glob("{exp}/unconditional_segmentations/*".format(exp=args.exp)))
# Get dump for KITTI
folder_kitti_seg = "kitti_segmentations"
folder_kitti_fid = "kitti_fid"
generate_kitti_fid(folder_kitti_fid, folder_kitti_seg, sample_count, 0)
folder1 = "{exp}/unconditional_fid/".format(exp=str(args.exp))
folder2 = folder_kitti_fid
fid_score = lidargen_fid.get_fid(folder1, folder2)
print('-------------------------------------------------')
print('FID Score: ' + str(fid_score))
print('-------------------------------------------------')
if (not (args.fid_pointcloud is None)):
# Get dump for model samples
os.system("rm -r {exp}_fid".format(exp=args.folder_name))
os.system("mkdir {exp}_fid".format(exp=args.folder_name))
os.system("rm -r {exp}_seg".format(exp=args.folder_name))
os.system("mkdir {exp}_seg".format(exp=args.folder_name))
rangenetpp.main('--dataset ignore --point_cloud --model rangenetpp/lidar_bonnetal_master/darknet53-1024/ --dump {pc_folder} --output_dir {exp}_seg --frd_dir {exp}_fid'.format(pc_folder=str(args.fid_pointcloud), exp=str(args.folder_name)))
if (args.mmd):
mmd_score = mmd.calculate_mmd("{exp}/unconditional_samples/".format(exp=str(args.exp)))
print('-------------------------------------------------')
print('MMD Score: ' + str(mmd_score))
print('-------------------------------------------------')
if (args.jsd):
jsd_score = jsd.calculate_jsd("{exp}/unconditional_samples/".format(exp=str(args.exp)))
print('-------------------------------------------------')
print('JSD Score: ' + str(jsd_score))
print('-------------------------------------------------')
if(args.iou):
os.system("rm -r " + str(args.exp) + '/target_rangenet_segmentations')
os.system("rm -r " + str(args.exp) + '/target_rangenet_fid')
os.system("mkdir " + str(args.exp) + "/target_rangenet_segmentations")
os.system("mkdir " + str(args.exp) + "/target_rangenet_fid")
os.system("rm -r " + str(args.exp) + '/result_rangenet_segmentations')
os.system("rm -r " + str(args.exp) + '/result_rangenet_fid')
os.system("mkdir " + str(args.exp) + "/result_rangenet_segmentations")
os.system("mkdir " + str(args.exp) + "/result_rangenet_fid")
rangenetpp.main("--dataset ignore --model rangenetpp/lidar_bonnetal_master/darknet53-1024/ --dump {exp}/densification_result/ --output_dir {exp}/result_rangenet_segmentations --frd_dir {exp}/result_rangenet_fid".format(exp=str(args.exp)))
rangenetpp.main('--dataset ignore --model rangenetpp/lidar_bonnetal_master/darknet53-1024/ --dump {exp}/densification_target/ --output_dir {exp}/target_rangenet_segmentations --frd_dir {exp}/target_rangenet_fid'.format(exp=str(args.exp)))
iou = lidargen_iou.calculate_iou("{exp}/result_rangenet_segmentations".format(exp=args.exp), "{exp}/target_rangenet_segmentations".format(exp=args.exp))
print('-------------------------------------------------')
print('IOU Score: ' + str(iou))
print('-------------------------------------------------')
if(args.mae):
lidargen_mae.calculate_mae('./{exp}/'.format(exp=str(args.exp)))
print('-------------------------------------------------')
print('LiDARGen Completed. Enjoy')
print('-------------------------------------------------')
if __name__ == '__main__':
main()