-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathreader.py
141 lines (121 loc) · 4.54 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from queue import Queue
from threading import Thread
import random
def padding_seq(seq):
results = []
max_len = 0
for s in seq:
if max_len < len(s):
max_len = len(s)
for i in range(0, len(seq)):
l = max_len - len(seq[i])
results.append(seq[i] + [0 for j in range(l)])
return results
def encode_text(words, vocab_indices):
return [vocab_indices[word] for word in words if word in vocab_indices]
def decode_text(labels, vocabs, end_token = '</s>'):
results = []
for idx in labels:
word = vocabs[idx]
if word == end_token:
return ' '.join(results)
results.append(word)
return ' '.join(results)
def decode_multi_text(labels, vocabs, end_token = '</s>'):
all_results = []
(result_count, length) = labels.shape
for i in range(length):
results = []
for j in range(result_count):
word = vocabs[labels[j][i]]
if word == end_token:
all_results.append(' '.join(results))
break
results.append(word)
return all_results
def read_vocab(vocab_file):
f = open(vocab_file, 'rb')
vocabs = [line.decode('utf8')[:-1] for line in f]
f.close()
return vocabs
class SeqReader():
def __init__(self, input_file, target_file, vocab_file, batch_size,
queue_size = 2048, worker_size = 2, end_token = '</s>',
padding = True, max_len = 50):
self.input_file = input_file
self.target_file = target_file
self.end_token = end_token
self.batch_size = batch_size
self.padding = padding
self.max_len = max_len
# self.vocabs = read_vocab(vocab_file) + [end_token]
self.vocabs = read_vocab(vocab_file)
self.vocab_indices = dict((c, i) for i, c in enumerate(self.vocabs))
self.data_queue = Queue(queue_size)
self.worker_size = worker_size
with open(self.input_file) as f:
for i, l in enumerate(f):
pass
f.close()
self.single_lines = i+1
self.data_size = int(self.single_lines / batch_size)
self.data_pos = 0
self._init_reader()
def start(self):
return
'''
for i in range(self.worker_size):
t = Thread(target=self._init_reader())
t.daemon = True
t.start()
'''
def read_single_data(self):
if self.data_pos >= len(self.data):
random.shuffle(self.data)
self.data_pos = 0
result = self.data[self.data_pos]
self.data_pos += 1
return result
def read(self):
while True:
batch = {'in_seq': [],
'in_seq_len': [],
'target_seq': [],
'target_seq_len': []}
for i in range(0, self.batch_size):
item = self.read_single_data()
batch['in_seq'].append(item['in_seq'])
batch['in_seq_len'].append(item['in_seq_len'])
batch['target_seq'].append(item['target_seq'])
batch['target_seq_len'].append(item['target_seq_len'])
if self.padding:
batch['in_seq'] = padding_seq(batch['in_seq'])
batch['target_seq'] = padding_seq(batch['target_seq'])
yield batch
def _init_reader(self):
self.data = []
input_f = open(self.input_file, 'rb')
target_f = open(self.target_file, 'rb')
for input_line in input_f:
input_line = input_line.decode('utf-8')[:-1]
target_line = target_f.readline().decode('utf-8')[:-1]
input_words = [x for x in input_line.split(' ') if x != '']
if len(input_words) >= self.max_len:
input_words = input_words[:self.max_len-1]
input_words.append(self.end_token)
target_words = [x for x in target_line.split(' ') if x != '']
if len(target_words) >= self.max_len:
target_words = target_words[:self.max_len-1]
target_words = ['<s>',] + target_words
target_words.append(self.end_token)
in_seq = encode_text(input_words, self.vocab_indices)
target_seq = encode_text(target_words, self.vocab_indices)
self.data.append({
'in_seq': in_seq,
'in_seq_len': len(in_seq),
'target_seq': target_seq,
'target_seq_len': len(target_seq) - 1
})
input_f.close()
target_f.close()
self.data_pos = len(self.data)