forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshallow_EEGGraphConvNet.py
50 lines (39 loc) · 1.59 KB
/
shallow_EEGGraphConvNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch.nn as nn
import torch.nn.functional as function
from dgl.nn import GraphConv, SumPooling
class EEGGraphConvNet(nn.Module):
"""EEGGraph Convolution Net
Parameters
----------
num_feats: the number of features per node. In our case, it is 6.
"""
def __init__(self, num_feats):
super(EEGGraphConvNet, self).__init__()
self.conv1 = GraphConv(num_feats, 32)
self.conv2 = GraphConv(32, 20)
self.conv2_bn = nn.BatchNorm1d(
20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
)
self.fc_block1 = nn.Linear(20, 10)
self.fc_block2 = nn.Linear(10, 2)
# Xavier initializations
self.fc_block1.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1))
self.fc_block2.apply(lambda x: nn.init.xavier_normal_(x.weight, gain=1))
def forward(self, g, return_graph_embedding=False):
x = g.ndata["x"]
edge_weight = g.edata["edge_weights"]
x = function.leaky_relu(self.conv1(g, x, edge_weight=edge_weight))
x = function.leaky_relu(
self.conv2_bn(self.conv2(g, x, edge_weight=edge_weight))
)
# NOTE: this takes node-level features/"embeddings"
# and aggregates to graph-level - use for graph-level classification
sumpool = SumPooling()
out = sumpool(g, x)
if return_graph_embedding:
return out
out = function.dropout(out, p=0.2, training=self.training)
out = self.fc_block1(out)
out = function.leaky_relu(out)
out = self.fc_block2(out)
return out