-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMC.h
339 lines (312 loc) · 13.2 KB
/
MC.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#ifndef MC_CPP_INCLUDED
#define MC_CPP_INCLUDED
#include <vector>
#include <cmath>
namespace MC
{
// Optionally define double precision
#ifdef MC_CPP_USE_DOUBLE_PRECISION
typedef double MC_FLOAT;
#else
typedef float MC_FLOAT;
#endif
typedef unsigned int muint;
typedef struct mcVec3f
{
public:
union
{
MC_FLOAT v[3];
struct
{
MC_FLOAT x, y, z;
};
};
inline mcVec3f& operator+=(const mcVec3f& r)
{
x += r.x; y += r.y; z += r.z;
return *this;
}
inline MC_FLOAT& operator[](int i)
{
return v[i];
}
} mcVec3f;
static inline MC_FLOAT mc_internalLength2(const mcVec3f& v)
{
return v.x * v.x + v.y * v.y + v.z * v.z;
}
static inline MC_FLOAT mc_internalLength(const mcVec3f& v)
{
return std::sqrt(mc_internalLength2(v));
}
static inline mcVec3f mc_internalNormalize(const mcVec3f& v)
{
MC_FLOAT vv = mc_internalLength(v);
return mcVec3f({ v.x / vv, v.y / vv, v.z / vv });
}
static inline mcVec3f mc_internalCross(const mcVec3f& v1, const mcVec3f& v2)
{
return mcVec3f({ v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x });
}
inline mcVec3f operator-(const mcVec3f& l, const mcVec3f r)
{
return mcVec3f({ l.x - r.x, l.y - r.y, l.z - r.z });
}
typedef struct mcVec3i
{
public:
union
{
muint v[3];
struct
{
muint x, y, z;
};
};
inline muint& operator[](int i) { return v[i]; }
} mcVec3i;
typedef struct mcMesh
{
public:
std::vector<mcVec3f> vertices;
std::vector<mcVec3f> normals;
std::vector<muint> indices;
} mcMesh;
void marching_cube(MC_FLOAT* field, muint nx, muint ny, muint nz, mcMesh& outputMesh);
void setDefaultArraySizes(muint vertSize, muint normSize, muint triSize);
}
#endif
namespace MC
{
#ifdef MC_IMPLEM_ENABLE
static muint defaultVerticeArraySize = 100000;
static muint defaultNormalArraySize = 100000;
static muint defaultTriangleArraySize = 400000;
static inline muint mc_internalToIndex1D(muint i, muint j, muint k, const mcVec3i& size)
{
return (k * size.y + j) * size.x + i;
}
static inline muint mc_internalToIndex1DSlab(muint i, muint j, muint k, const mcVec3i& size)
{
return size.x * size.y * (k % 2) + j * size.x + i;
}
// Look-up table for triangle configurations
static const unsigned long long mc_internalMarching_cube_tris[256] =
{
0ULL, 33793ULL, 36945ULL, 159668546ULL,
18961ULL, 144771090ULL, 5851666ULL, 595283255635ULL,
20913ULL, 67640146ULL, 193993474ULL, 655980856339ULL,
88782242ULL, 736732689667ULL, 797430812739ULL, 194554754ULL,
26657ULL, 104867330ULL, 136709522ULL, 298069416227ULL,
109224258ULL, 8877909667ULL, 318136408323ULL, 1567994331701604ULL,
189884450ULL, 350847647843ULL, 559958167731ULL, 3256298596865604ULL,
447393122899ULL, 651646838401572ULL, 2538311371089956ULL, 737032694307ULL,
29329ULL, 43484162ULL, 91358498ULL, 374810899075ULL,
158485010ULL, 178117478419ULL, 88675058979ULL, 433581536604804ULL,
158486962ULL, 649105605635ULL, 4866906995ULL, 3220959471609924ULL,
649165714851ULL, 3184943915608436ULL, 570691368417972ULL, 595804498035ULL,
124295042ULL, 431498018963ULL, 508238522371ULL, 91518530ULL,
318240155763ULL, 291789778348404ULL, 1830001131721892ULL, 375363605923ULL,
777781811075ULL, 1136111028516116ULL, 3097834205243396ULL, 508001629971ULL,
2663607373704004ULL, 680242583802939237ULL, 333380770766129845ULL, 179746658ULL,
42545ULL, 138437538ULL, 93365810ULL, 713842853011ULL,
73602098ULL, 69575510115ULL, 23964357683ULL, 868078761575828ULL,
28681778ULL, 713778574611ULL, 250912709379ULL, 2323825233181284ULL,
302080811955ULL, 3184439127991172ULL, 1694042660682596ULL, 796909779811ULL,
176306722ULL, 150327278147ULL, 619854856867ULL, 1005252473234484ULL,
211025400963ULL, 36712706ULL, 360743481544788ULL, 150627258963ULL,
117482600995ULL, 1024968212107700ULL, 2535169275963444ULL, 4734473194086550421ULL,
628107696687956ULL, 9399128243ULL, 5198438490361643573ULL, 194220594ULL,
104474994ULL, 566996932387ULL, 427920028243ULL, 2014821863433780ULL,
492093858627ULL, 147361150235284ULL, 2005882975110676ULL, 9671606099636618005ULL,
777701008947ULL, 3185463219618820ULL, 482784926917540ULL, 2900953068249785909ULL,
1754182023747364ULL, 4274848857537943333ULL, 13198752741767688709ULL, 2015093490989156ULL,
591272318771ULL, 2659758091419812ULL, 1531044293118596ULL, 298306479155ULL,
408509245114388ULL, 210504348563ULL, 9248164405801223541ULL, 91321106ULL,
2660352816454484ULL, 680170263324308757ULL, 8333659837799955077ULL, 482966828984116ULL,
4274926723105633605ULL, 3184439197724820ULL, 192104450ULL, 15217ULL,
45937ULL, 129205250ULL, 129208402ULL, 529245952323ULL,
169097138ULL, 770695537027ULL, 382310500883ULL, 2838550742137652ULL,
122763026ULL, 277045793139ULL, 81608128403ULL, 1991870397907988ULL,
362778151475ULL, 2059003085103236ULL, 2132572377842852ULL, 655681091891ULL,
58419234ULL, 239280858627ULL, 529092143139ULL, 1568257451898804ULL,
447235128115ULL, 679678845236084ULL, 2167161349491220ULL, 1554184567314086709ULL,
165479003923ULL, 1428768988226596ULL, 977710670185060ULL, 10550024711307499077ULL,
1305410032576132ULL, 11779770265620358997ULL, 333446212255967269ULL, 978168444447012ULL,
162736434ULL, 35596216627ULL, 138295313843ULL, 891861543990356ULL,
692616541075ULL, 3151866750863876ULL, 100103641866564ULL, 6572336607016932133ULL,
215036012883ULL, 726936420696196ULL, 52433666ULL, 82160664963ULL,
2588613720361524ULL, 5802089162353039525ULL, 214799000387ULL, 144876322ULL,
668013605731ULL, 110616894681956ULL, 1601657732871812ULL, 430945547955ULL,
3156382366321172ULL, 7644494644932993285ULL, 3928124806469601813ULL, 3155990846772900ULL,
339991010498708ULL, 10743689387941597493ULL, 5103845475ULL, 105070898ULL,
3928064910068824213ULL, 156265010ULL, 1305138421793636ULL, 27185ULL,
195459938ULL, 567044449971ULL, 382447549283ULL, 2175279159592324ULL,
443529919251ULL, 195059004769796ULL, 2165424908404116ULL, 1554158691063110021ULL,
504228368803ULL, 1436350466655236ULL, 27584723588724ULL, 1900945754488837749ULL,
122971970ULL, 443829749251ULL, 302601798803ULL, 108558722ULL,
724700725875ULL, 43570095105972ULL, 2295263717447940ULL, 2860446751369014181ULL,
2165106202149444ULL, 69275726195ULL, 2860543885641537797ULL, 2165106320445780ULL,
2280890014640004ULL, 11820349930268368933ULL, 8721082628082003989ULL, 127050770ULL,
503707084675ULL, 122834978ULL, 2538193642857604ULL, 10129ULL,
801441490467ULL, 2923200302876740ULL, 1443359556281892ULL, 2901063790822564949ULL,
2728339631923524ULL, 7103874718248233397ULL, 12775311047932294245ULL, 95520290ULL,
2623783208098404ULL, 1900908618382410757ULL, 137742672547ULL, 2323440239468964ULL,
362478212387ULL, 727199575803140ULL, 73425410ULL, 34337ULL,
163101314ULL, 668566030659ULL, 801204361987ULL, 73030562ULL,
591509145619ULL, 162574594ULL, 100608342969108ULL, 5553ULL,
724147968595ULL, 1436604830452292ULL, 176259090ULL, 42001ULL,
143955266ULL, 2385ULL, 18433ULL, 0ULL,
};
/*!
\brief Approximates the vertex position of the mesh from the scalar values along an edge (va, vb).
\param slab_inds slab indices global array
\param mesh the mesh
\param va, vb edges values
\param axis axis index 0/1/2
\param x, y, z current slab index
\param size slab indices array size
*/
static void mc_internalComputeEdge(mcVec3i* slab_inds, mcMesh& mesh, float va, float vb, int axis, muint x, muint y, muint z, const mcVec3i& size)
{
if ((va < 0.0) == (vb < 0.0))
return;
mcVec3f v = { MC_FLOAT(x), MC_FLOAT(y), MC_FLOAT(z) };
v[axis] += va / (va - vb);
slab_inds[mc_internalToIndex1DSlab(x, y, z, size)][axis] = muint(mesh.vertices.size());
mesh.vertices.push_back(v);
mesh.normals.push_back(mcVec3f({ 0, 0, 0 }));
}
/*!
\brief Computes and acumulates the geometric normal of triangle formed by vertices (a, b, c).
\param mesh the mesh
\param a, b, c vertex indices
*/
static inline void mc_internalAccumulateNormal(mcMesh& mesh, muint a, muint b, muint c)
{
mcVec3f& va = mesh.vertices[a];
mcVec3f& vb = mesh.vertices[b];
mcVec3f& vc = mesh.vertices[c];
mcVec3f ab = va - vb;
mcVec3f cb = vc - vb;
mcVec3f n = mc_internalCross(cb, ab);
mesh.normals[a] += n;
mesh.normals[b] += n;
mesh.normals[c] += n;
}
/*
\brief Stores the default array sizes for the indexed mesh computed
by the marching cubes. Useful for speeding-up the marching cubes.
\param vertSize vertex array size
\param normSize normal array size
\param triSize triangle index array size
*/
inline void setDefaultArraySizes(muint vertSize, muint normSize, muint triSize)
{
defaultVerticeArraySize = vertSize;
defaultNormalArraySize = normSize;
defaultTriangleArraySize = triSize;
}
/*!
\brief Computes the mesh representing the zero isosurface of a 3D scalarfield and
outputs it to an indexed mesh.
\param field scalarfield of real values in C-contiguous order: the value for grid point
(ix, iy, iz) is stored at index (iz*ny + iy)*nx + ix
\param nx, ny, nz grid dimension
\param outputMesh indexed mesh returned.
*/
void marching_cube(MC_FLOAT* field, muint nx, muint ny, muint nz, mcMesh& outputMesh)
{
outputMesh.vertices.reserve(defaultVerticeArraySize);
outputMesh.normals.reserve(defaultNormalArraySize);
outputMesh.indices.reserve(defaultTriangleArraySize);
const mcVec3i size = { nx, ny, nz };
mcVec3i* slab_inds = new mcVec3i[nx * ny * 2];
MC_FLOAT vs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
muint edge_indices[12];
for (muint z = 0; z < nz - 1; z++)
{
for (muint y = 0; y < ny - 1; y++)
{
for (muint x = 0; x < nx - 1; x++)
{
vs[0] = field[mc_internalToIndex1D(x, y, z, size)];
vs[1] = field[mc_internalToIndex1D(x + 1, y, z, size)];
vs[2] = field[mc_internalToIndex1D(x, y + 1, z, size)];
vs[3] = field[mc_internalToIndex1D(x + 1, y + 1, z, size)];
vs[4] = field[mc_internalToIndex1D(x, y, z + 1, size)];
vs[5] = field[mc_internalToIndex1D(x + 1, y, z + 1, size)];
vs[6] = field[mc_internalToIndex1D(x, y + 1, z + 1, size)];
vs[7] = field[mc_internalToIndex1D(x + 1, y + 1, z + 1, size)];
const int config_n =
((vs[0] < 0) << 0) |
((vs[1] < 0) << 1) |
((vs[2] < 0) << 2) |
((vs[3] < 0) << 3) |
((vs[4] < 0) << 4) |
((vs[5] < 0) << 5) |
((vs[6] < 0) << 6) |
((vs[7] < 0) << 7);
if (config_n == 0 || config_n == 255)
continue;
if (y == 0 && z == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[0], vs[1], 0, x, y, z, size);
if (z == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[2], vs[3], 0, x, y + 1, z, size);
if (y == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[4], vs[5], 0, x, y, z + 1, size);
mc_internalComputeEdge(slab_inds, outputMesh, vs[6], vs[7], 0, x, y + 1, z + 1, size);
if (x == 0 && z == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[0], vs[2], 1, x, y, z, size);
if (z == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[1], vs[3], 1,x + 1, y, z, size);
if (x == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[4], vs[6], 1, x, y, z + 1, size);
mc_internalComputeEdge(slab_inds, outputMesh, vs[5], vs[7], 1, x + 1, y, z + 1, size);
if (x == 0 && y == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[0], vs[4], 2, x, y, z, size);
if (y == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[1], vs[5], 2, x + 1, y, z, size);
if (x == 0)
mc_internalComputeEdge(slab_inds, outputMesh, vs[2], vs[6], 2, x, y + 1, z, size);
mc_internalComputeEdge(slab_inds, outputMesh, vs[3], vs[7], 2, x + 1, y + 1, z, size);
edge_indices[0] = slab_inds[mc_internalToIndex1DSlab(x, y, z, size)].x;
edge_indices[1] = slab_inds[mc_internalToIndex1DSlab(x, y + 1, z, size)].x;
edge_indices[2] = slab_inds[mc_internalToIndex1DSlab(x, y, z + 1, size)].x;
edge_indices[3] = slab_inds[mc_internalToIndex1DSlab(x, y + 1, z + 1, size)].x;
edge_indices[4] = slab_inds[mc_internalToIndex1DSlab(x, y, z, size)].y;
edge_indices[5] = slab_inds[mc_internalToIndex1DSlab(x + 1, y, z, size)].y;
edge_indices[6] = slab_inds[mc_internalToIndex1DSlab(x, y, z + 1, size)].y;
edge_indices[7] = slab_inds[mc_internalToIndex1DSlab(x + 1, y, z + 1, size)].y;
edge_indices[8] = slab_inds[mc_internalToIndex1DSlab(x, y, z, size)].z;
edge_indices[9] = slab_inds[mc_internalToIndex1DSlab(x + 1, y, z, size)].z;
edge_indices[10] = slab_inds[mc_internalToIndex1DSlab(x, y + 1, z, size)].z;
edge_indices[11] = slab_inds[mc_internalToIndex1DSlab(x + 1, y + 1, z, size)].z;
const uint64_t& config = mc_internalMarching_cube_tris[config_n];
const size_t n_triangles = config & 0xF;
const size_t n_indices = n_triangles * 3;
const size_t& indexBase = outputMesh.indices.size();
int offset = 4;
for (size_t i = 0; i < n_indices; i++)
{
const int edge = (config >> offset) & 0xF;
outputMesh.indices.push_back(edge_indices[edge]);
offset += 4;
}
for (size_t i = 0; i < n_triangles; i++)
{
mc_internalAccumulateNormal(outputMesh,
outputMesh.indices[indexBase + i * 3 + 0],
outputMesh.indices[indexBase + i * 3 + 1],
outputMesh.indices[indexBase + i * 3 + 2]);
}
}
}
}
for (size_t i = 0; i < outputMesh.normals.size(); i++)
outputMesh.normals[i] = mc_internalNormalize(outputMesh.normals[i]);
delete[] slab_inds;
}
#endif
}