-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
79 lines (68 loc) · 3.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import json
import argparse
import torch
import dataloaders
import models
import math
from utils import Logger
from trainer import Trainer
import torch.nn.functional as F
from utils.losses import abCE_loss, CE_loss, consistency_weight, FocalLoss, softmax_helper, get_alpha
def get_instance(module, name, config, *args):
# GET THE CORRESPONDING CLASS / FCT
return getattr(module, config[name]['type'])(*args, **config[name]['args'])
def main(config, resume):
torch.manual_seed(42)
train_logger = Logger()
# DATA LOADERS
config['train_supervised']['percnt_lbl'] = config["sup_percent"]
config['train_unsupervised']['percnt_lbl'] = config["unsup_percent"]
config['train_unsupervised']['use_weak_lables'] = config['use_weak_lables']
supervised_loader = dataloaders.CDDataset(config['train_supervised'])
unsupervised_loader = dataloaders.CDDataset(config['train_unsupervised'])
val_loader = dataloaders.CDDataset(config['val_loader'])
iter_per_epoch = len(unsupervised_loader)
# SUPERVISED LOSS
if config['model']['sup_loss'] == 'CE':
sup_loss = CE_loss
elif config['model']['sup_loss'] == 'FL':
alpha = get_alpha(supervised_loader) # calculare class occurences
print(alpha)
sup_loss = FocalLoss(apply_nonlin = softmax_helper, alpha = alpha, gamma = 2.0, smooth = 1e-5)
else:
sup_loss = abCE_loss(iters_per_epoch=iter_per_epoch, epochs=config['trainer']['epochs'],
num_classes=val_loader.dataset.num_classes)
# MODEL
rampup_ends = int(config['ramp_up'] * config['trainer']['epochs'])
cons_w_unsup = consistency_weight(final_w=config['unsupervised_w'], iters_per_epoch=len(unsupervised_loader),
rampup_ends=rampup_ends)
model = models.Consistency_ResNet50_CD(num_classes=val_loader.dataset.num_classes, conf=config['model'],
sup_loss=sup_loss, cons_w_unsup=cons_w_unsup,
weakly_loss_w=config['weakly_loss_w'], use_weak_lables=config['use_weak_lables'])
print(f'\n{model}\n')
# TRAINING
trainer = Trainer(
model=model,
resume=resume,
config=config,
supervised_loader=supervised_loader,
unsupervised_loader=unsupervised_loader,
val_loader=val_loader,
iter_per_epoch=iter_per_epoch,
train_logger=train_logger)
trainer.train()
if __name__=='__main__':
# PARSE THE ARGS
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('-c', '--config', default='configs/config_LEVIR-sup_WHU-unsup.json',type=str,
help='Path to the config file')
parser.add_argument('-r', '--resume', default=None, type=str,
help='Path to the .pth model checkpoint to resume training')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('--local', action='store_true', default=False)
args = parser.parse_args()
config = json.load(open(args.config))
torch.backends.cudnn.benchmark = True
main(config, args.resume)