-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrma.go
481 lines (400 loc) · 10.7 KB
/
rma.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
// CM implements the functions & types for implementation of Channel models in 38-901-e00
package CM
import (
"fmt"
"log"
"math"
"math/rand"
"github.com/wiless/cellular/pathloss"
"github.com/wiless/vlib"
)
// // dist3D returns the 3D distance between two Nodes considering d_out & d_in as in Eq. 7.4.1
// func dist3D(src, dest deployment.Node) (d float64) {
// d3d:=dest.Location.DistanceFrom(src)
//
// }
const rmaDMax = 21000.0 /// max distance supported in RMA for LOS
const rmaH float64 = 5 // Averge building heights in RuralMacro
const rmaW float64 = 20 // Averge road width in RuralMacro
const rmaHBS float64 = 35
const rmaHUT = 1.5
//wraps the interface for supporting deployment link
type RMa struct {
*pathloss.ModelSetting
dBP float64 /// Breaking point distance
c1, c2, c3 float64 /// internal constants for LOS
c4, c5, c6, c7 float64 /// internal constants for NLOS
ForceLOS bool
ForceNLOS bool
isOK bool
Extended bool
rmaNlosMax float64
streetW float64
nlossOffset float64 // Offset for LMLC
}
// LoadIMT2020 loads the default parameters as approved in M.2412 (IMT2020 Evaluation Methodology)
func (r *RMa) LoadIMT2020(fGHz float64) {
// r.Set(RMADefault())
r.Set(RMADefault().SetFGHz(fGHz))
r.ShadowLoss = true
}
// ForcesLOS for all
func (r *RMa) ForceAllLOS(f bool) {
r.ForceLOS = f
if f {
r.ForceNLOS = false
}
}
// ForcesLOS for all
func (r *RMa) ForceAllNLOS(f bool) {
r.ForceNLOS = f
if f {
r.ForceLOS = false
}
}
// Returns a default RMA Model settings
func RMADefault() *pathloss.ModelSetting {
ms := pathloss.NewModelSetting()
ms.SetFGHz(.7)
ms.CutOffDistance = 21000 /// updated with recent ITU doc M.2412
ms.Name = "RMa"
ms.AddParam("HBS", rmaHBS).AddParam("HUT", rmaHUT)
return ms
}
func (r *RMa) Check() {
if !r.isOK {
log.Panic("RMa Model not initialized, Call .Init() ")
}
}
func (w *RMa) Set(ms *pathloss.ModelSetting) {
if ms.CutOffDistance == 0 {
ms.CutOffDistance = rmaDMax
}
w.rmaNlosMax = 21000
// copy(w.ModelSetting, *ms)
w.ModelSetting = ms
hBS, hUT := w.Value("hBS"), w.Value("hUT")
fGHz := w.FGHz()
if fGHz == 0 {
w.isOK = false
log.Print("RMA ModelSettings Frequency not set !!")
}
if hBS == 0 || hUT == 0 {
log.Print("Could not find paramters hBS / hUT in the setting, Setting to Default 35.0m & 1.5m")
hBS = rmaHBS
hUT = rmaHUT
} else {
log.Print("Good found values !! ")
}
hh := math.Pow(rmaH, 1.72)
w.c1 = math.Min(0.03*hh, 10)
w.c2 = math.Min(0.044*hh, 14.77)
w.c3 = 0.002 * mlog(rmaH)
w.streetW = rmaW
// nlos constants
w.c4 = 161.04 - 7.1*mlog(w.streetW) + 7.5*mlog(rmaH)
w.c5 = -(24.37 - 3.7*math.Pow(rmaH/hBS, 2)) * mlog(hBS)
w.c6 = (43.42 - 3.1*mlog(hBS))
w.c7 = 20*mlog(fGHz) - (3.2*(math.Pow(mlog(11.75*hUT), 2)) - 4.97)
w.ForceLOS = false
w.ForceNLOS = false
w.dBP = w.BPDistance()
w.nlossOffset = 12.0 // 12dB offset if its LMLC M.2412 Condition
w.isOK = true
}
//DMax returns the maximum supported distance
func (r RMa) DMax() float64 {
return r.CutOffDistance
}
func (r *RMa) SetStreetW(ww float64) {
r.streetW = ww
}
func (w RMa) Get() *pathloss.ModelSetting {
return w.ModelSetting
}
// Initializes with the default RMA modelsettings at fGHz frequency
func (w *RMa) Init(fGHz float64) {
w.Set(RMADefault().SetFGHz(fGHz))
}
func (w *RMa) SetDMax(dmax float64) {
w.Check()
w.CutOffDistance = dmax
}
func (w *RMa) SetNLosDMax(dmax float64) {
w.Check()
w.rmaNlosMax = dmax
}
func (r RMa) BPDistance() float64 {
hBS, hUT := r.Value("hBS"), r.Value("hUT")
log.Print(hBS, hUT)
r.dBP = 2 * math.Pi * hBS * hUT * r.FGHz() * 1e9 / C
// r.dBP=7667
return r.dBP
}
// Exported functions MUST implement
func (r RMa) IsSupported(fghz float64) bool {
r.Check()
// 30GHz According to Note 2 of Table 7.4.1-1 Path Loss (fgHz in GHz)
if r.FGHz() < 30 && r.FGHz() > 0.5 {
return true
}
return false
}
func (r RMa) PLbetween(node1, node2 vlib.Location3D) (plDb float64, isLOS bool, err error) {
if !r.isOK {
log.Panicln("RMA: Model not Initialized ...")
}
d3d := node1.DistanceFrom(node2)
// d2d := node1.Distance2DFrom(node2)
plDb, LOS, err := r.PL(d3d)
// if LOS && err != nil {
// log.Printf("PL ISLOS=%v , ERROR=%v , %v to %v ", LOS, err, node1, node2)
// }
return plDb, LOS, err
}
func (r RMa) IsLOS(d2d float64) bool {
if !r.isOK {
log.Panicln("RMA: Model not Initialized ...")
}
if d2d > r.rmaNlosMax {
// Model does not support NLOS > rmaNlosMax (=21000)
return true
}
if d2d <= 10 {
return true
} else {
P_LOS := mexp(-(d2d - 10) / 1000)
if rand.Float64() <= P_LOS {
return true
} else {
return false
}
}
}
func (r RMa) PLosPDF(d2d float64) float64 {
if d2d <= 10 {
return 1
} else {
// Model does not suppor NLOS > rmaNlosMax (=5000)
if d2d > r.rmaNlosMax {
return 1
}
P_LOS := mexp(-(d2d - 10) / 1000)
return P_LOS
}
}
func (r RMa) PLnlos(dist float64) (plDb float64, e error) {
r.Check()
pldb, err := r.nlos(dist)
if r.ShadowLoss && err == nil {
// Add NLOS Shadow Loss
// See TABLE A1-5
sigmaSFdB := 8.0
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, err
}
func (r RMa) PLlos(dist float64) (plDb float64, e error) {
r.Check()
pldb, err := r.los(dist)
if r.ShadowLoss && dist >= 10 && err == nil {
var sigmaSFdB float64
if dist < r.dBP {
sigmaSFdB = 4.0
} else {
sigmaSFdB = 6.0
}
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, err
}
func (r RMa) PLbetweenIndoor(node1, node2 vlib.Location3D, dIn float64) (plDb float64, isLOS bool, err error) {
if !r.isOK {
log.Panicln("RMA: Model not Initialized ...")
}
d3d := node1.DistanceFrom(node2)
d2d := node1.Distance2DFrom(node2)
var LOS bool = r.ForceLOS
if !r.ForceLOS && !r.ForceNLOS {
LOS = r.IsLOS(d2d)
}
plDb, LOS, err = r.PLIndoor(d3d, dIn)
// if LOS && err != nil {
// log.Printf("PL ISLOS=%v , ERROR=%v , %v to %v ", LOS, err, node1, node2)
// }
return plDb, LOS, err
}
func (r RMa) PLIndoor(distTotal float64, dIn float64) (plDb float64, isNLOS bool, err error) {
r.Check()
var LOS bool = r.ForceLOS
var dOut = distTotal - dIn
if !r.ForceLOS && !r.ForceNLOS {
if distTotal < r.rmaNlosMax {
if dIn == 0 {
// Outdoor UE
LOS = r.IsLOS(distTotal)
} else {
LOS = r.IsLOS(dOut)
}
}
}
if !LOS {
pldb, err := r.nlos(dOut)
if r.ShadowLoss && err == nil {
// Add NLOS Shadow Loss
// See TABLE A1-5
sigmaSFdB := 8.0
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, LOS, err
} else {
pldb, err := r.los(dOut)
if r.ShadowLoss && dOut >= 10 && err == nil {
var sigmaSFdB float64
if dOut < r.dBP {
sigmaSFdB = 4.0
} else {
sigmaSFdB = 6.0
}
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, LOS, err
}
}
func (r RMa) PL(dist float64) (plDb float64, isLOS bool, err error) {
r.Check()
var LOS bool = r.ForceLOS
if !r.ForceLOS && !r.ForceNLOS {
// if dist < r.rmaNlosMax {
LOS = r.IsLOS(dist)
// }
}
if !LOS {
pldb, err := r.nlos(dist)
if r.ShadowLoss && err == nil {
// Add NLOS Shadow Loss
// See TABLE A1-5
sigmaSFdB := 8.0
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, LOS, err
} else {
pldb, err := r.los(dist)
if r.ShadowLoss && dist >= 10 && err == nil {
var sigmaSFdB float64
if dist < r.dBP {
sigmaSFdB = 4.0
} else {
sigmaSFdB = 6.0
}
pldb += RandLogNorm(0, sigmaSFdB)
}
return pldb, LOS, err
}
}
// non-exported functions internal / private routines
func (r RMa) nlos(dist float64) (plDb float64, e error) {
freqGHz := r.FGHz()
// log.Print("NLOS Freq is ",freqGHz)
var d3d, d2d float64 = dist, dist
if d2d < 10 {
return FreeSpace(d2d, freqGHz), nil
}
if 10 <= d2d && d2d <= r.rmaNlosMax {
loss1, err := r.los(d3d)
// P3(indx)=C4+C5+C6*(mlog(d3d)-3)+C7;
r.c4 = 161.04 - 7.1*mlog(r.streetW) + 7.5*mlog(rmaH)
loss2 := r.c4 + r.c5 + r.c6*(mlog(d3d)-3) + r.c7
// loss2 := 161.04 - 7.1*mlog(r.streetW) + 7.5*mlog(rmaH) - (24.37-3.7*math.Pow(rmaH/hBS, 2))*mlog(hBS) + (43.42-3.1*mlog(hBS))*(mlog(d3d)-3) + 20*mlog(freqGHz) - mpow(3.2*(mlog(11.75*hUT)), 2) - 4.97
if err != nil {
log.Println("NLOS ERR ", loss1, err)
}
nlosdB := max(loss1, loss2)
if r.Extended { // if its LMLC mode
nlosdB = max(loss1, loss2-r.nlossOffset)
}
return nlosdB, nil
} else {
return 99999, fmt.Errorf("NLOS:Unsupported d=%.2f>%f", dist, r.CutOffDistance)
}
}
func (r *RMa) p1(d3d, freqGHz float64) (plDb float64, valid bool) {
plDb = 20*mlog(40*pi*d3d*freqGHz/3) + r.c1*mlog(d3d) - r.c2 + r.c3*d3d
return plDb, true
}
func (r RMa) los(dist float64) (plDb float64, e error) {
freqGHz := r.FGHz()
var d3d, d2d float64 = dist, dist
e = nil
if d2d < 10 {
flpl := FreeSpace(d2d, freqGHz)
return flpl, e
}
if 10 <= d2d && d2d <= r.dBP {
loss, ok := r.p1(d3d, freqGHz)
if !ok {
e = fmt.Errorf("LOS : PL1(%v,%v) Error ", dist, freqGHz)
}
return loss, e
} else if d2d > r.dBP && d2d <= r.CutOffDistance {
p1BP, ok := r.p1(r.dBP, freqGHz)
// p1BP,ok:=r.p1(760, freqGHz)
if !ok {
e = fmt.Errorf("LOS : PL1(%v,%v) Error ", dist, freqGHz)
return 99999, e
}
loss := p1BP + 40.0*mlog(d3d/r.dBP)
// loss:=p1BP+ 40.0*mlog(d3d/769.0)
return loss, nil
} else {
// return math.NaN(), fmt.Errorf("Unsupported distance %d for LOS ", dist)
return 99999, fmt.Errorf("LOS:Unsupported d=%.2f>%f", dist, r.CutOffDistance)
}
}
func (r *RMa) losNodes(src, dest vlib.Location3D) (plDb float64, valid bool) {
d3d := src.DistanceFrom(dest)
d2d := src.Distance2DFrom(dest)
if 10 <= d2d && d2d <= r.dBP {
loss, _ := r.los(d3d)
return loss, true
} else if d2d > r.dBP && d2d <= r.CutOffDistance {
// loss, _ := r.p1(r.dBP, freqGHz)
plDb, err := r.los(d3d)
// plDb += 40 * mlog(d3d/r.dBP)
valid = (err == nil)
return plDb, valid
} else {
log.Printf("\nDistance not supported in this model")
return 0, false
}
}
func (r RMa) FnP1(d, fGHz float64) (pdDb float64, valid bool) {
r.Check()
return r.p1(d, fGHz)
}
func (r RMa) FnP2(d, fGHz float64) (pdDb float64, valid bool) {
r.Check()
p1BP, valid := r.p1(r.dBP, fGHz)
p2 := p1BP + 40.0*mlog(d/r.dBP)
return p2, valid
}
// O2IBuildingLossDb returns the Outdoor to Indoor Penetration Loss in dB
// Ref M.2412 Section 3.2, Table A1.7
// O2I=PLtw +PLin +N(0,σP2) , PLtw is the building penetration loss through the external wall,
// PLin is the inside loss dependent on the depth into the building, and
// σP is the standard deviation for the penetration loss.
// Only the Low-Loss model applicable
func (r RMa) O2ILossDb(fGHz float64, d2Din float64) float64 {
if d2Din == 0 {
return 0
}
// Material Loss + Building Loss
Ptw := 10.0 // for 3GPP low-loss model equation to be used..
PLin := 0.5 * d2Din
//sigmaP := 0
if fGHz > 6 {
log.Printf("RMA:O2I Not supported for f(%v)>6GHz", fGHz)
return 99999
}
return Ptw + PLin //+ rand.NormFloat64()
}