-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
83 lines (75 loc) · 2.62 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from typing import Text, Dict, Optional
import torch
class TextClassifizerConfig(object):
"""Configuration for `TextClassifizer`."""
def __init__(
self,
num_classes: int = 3,
batch_size: int = 4,
learning_rate: float = 1e-6,
epochs: int = 20,
max_sequence_length: int = 100,
train_data: Text = "data/text-classifizer/train.csv",
eval_data: Text = "data/text-classifizer/dev.csv"
):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(self.device))
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.num_classes = num_classes
self.train_data = train_data
self.eval_data = eval_data
self.batch_size = batch_size
self.learning_rate = learning_rate
self.epochs = epochs
self.max_sequence_length = max_sequence_length
class SequenceLabelConfig(object):
"""Configuration for `SequenceLabelConfig`."""
PAD_TAG = "[PAD]"
MAX_LENGTH = 250
TAG_TO_ID = {
PAD_TAG: 0,
"B-person": 1,
"I-person": 2,
"B-mobile": 3,
"I-mobile": 4,
"B-provin": 5,
"I-provin": 6,
"B-cities": 7,
"I-cities": 8,
"B-county": 9,
"I-county": 10,
"B-street": 11,
"I-street": 12,
"B-detail": 13,
"I-detail": 14,
"O": 15,
}
def __init__(
self,
batch_size: int = 8,
learning_rate: float = 5e-6,
epochs: int = 50,
max_length=MAX_LENGTH,
hidden_dim=50,
train_data: Text = "data/squence-label/train.csv",
eval_data: Text = "data/squence-label/dev.csv",
albert_vocab_file: Optional[Text] = "albert_base_zh/vocab_chinese.txt",
albert_hidden_size: Optional[int] = 768,
albert_pytorch_model_path: Optional[Text] = "models"
):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(self.device))
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.train_data = train_data
self.eval_data = eval_data
self.batch_size = batch_size
self.learning_rate = learning_rate
self.epochs = epochs
self.max_length = max_length
self.hidden_dim = hidden_dim
self.albert_vocab_file = albert_vocab_file
self.albert_hidden_size = albert_hidden_size
self.albert_pytorch_model_path = albert_pytorch_model_path
self.tag_to_id = self.TAG_TO_ID