-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
431 lines (361 loc) · 18.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import math
import torch
from typing import Optional, Text, List, Tuple
from torch import Tensor
from torch.autograd import Variable
from transformers import BertTokenizer, BertModel
from config import SequenceLabelConfig
class TextClassificationModel(torch.nn.Module):
""" rnn text classification"""
def __init__(self, max_length: Optional[int] = None, num_class: Optional[int] = None):
super(TextClassificationModel, self).__init__()
self.max_length = max_length
self.num_class = num_class
self.bert_dim = 768
self.bert = BertModel.from_pretrained('bert-base-chinese')
self.classifizer = torch.nn.Linear(self.bert_dim, num_class)
def forward(self, input_ids: Optional[Tensor], attention_mask: Optional[Tensor],
token_type_ids: Optional[Tensor]) -> Tensor:
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
return self.classifizer(outputs.pooler_output)
def summuary(self):
print("Model structure: ", self, "\n\n")
for name, param in self.named_parameters():
print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")
class CRF(torch.nn.Module):
"""Conditional random field.
This module implements a conditional random field [LMP01]_. The forward computation
of this class computes the log likelihood of the given sequence of tags and
emission score tensor. This class also has `~CRF.decode` method which finds
the best tag sequence given an emission score tensor using `Viterbi algorithm`_.
Args:
num_tags: Number of tags.
batch_first: Whether the first dimension corresponds to the size of a minibatch.
Attributes:
start_transitions (`~torch.nn.Parameter`): Start transition score tensor of size
``(num_tags,)``.
end_transitions (`~torch.nn.Parameter`): End transition score tensor of size
``(num_tags,)``.
transitions (`~torch.nn.Parameter`): Transition score tensor of size
``(num_tags, num_tags)``.
.. [LMP01] Lafferty, J., McCallum, A., Pereira, F. (2001).
"Conditional random fields: Probabilistic models for segmenting and
labeling sequence data". *Proc. 18th International Conf. on Machine
Learning*. Morgan Kaufmann. pp. 282–289.
.. _Viterbi algorithm: https://en.wikipedia.org/wiki/Viterbi_algorithm
"""
def __init__(self, num_tags: int, tag_to_ix: dict, max_length: int = 100, batch_first: bool = False,
device: Text = "cpu") -> None:
if num_tags <= 0:
raise ValueError(f'invalid number of tags: {num_tags}')
super().__init__()
self.num_tags = num_tags
self.tag_to_ix = tag_to_ix
self.max_length = max_length
self.batch_first = batch_first
self.start_transitions = torch.nn.Parameter(torch.empty(num_tags).to(device))
self.end_transitions = torch.nn.Parameter(torch.empty(num_tags).to(device))
self.transitions = torch.nn.Parameter(torch.empty(num_tags, num_tags).to(device))
self.device = device
self.reset_parameters()
def reset_parameters(self) -> None:
"""Initialize the transition parameters.
The parameters will be initialized randomly from a uniform distribution
between -0.1 and 0.1.
"""
torch.nn.init.uniform_(self.start_transitions, -0.1, 0.1)
torch.nn.init.uniform_(self.end_transitions, -0.1, 0.1)
torch.nn.init.uniform_(self.transitions, -0.1, 0.1)
def __repr__(self) -> str:
return f'{self.__class__.__name__}(num_tags={self.num_tags})'
def neg_log_likelihood_loss(
self,
emissions: torch.Tensor,
tags: torch.LongTensor,
mask: Optional[torch.ByteTensor] = None,
reduction: str = 'sum',
) -> torch.Tensor:
"""Compute the conditional log likelihood of a sequence of tags given emission scores.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
tags (`~torch.LongTensor`): Sequence of tags tensor of size
``(seq_length, batch_size)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
reduction: Specifies the reduction to apply to the output:
``none|sum|mean|token_mean``. ``none``: no reduction will be applied.
``sum``: the output will be summed over batches. ``mean``: the output will be
averaged over batches. ``token_mean``: the output will be averaged over tokens.
Returns:
`~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if
reduction is ``none``, ``()`` otherwise.
"""
self._validate(emissions, tags=tags, mask=mask)
if reduction not in ('none', 'sum', 'mean', 'token_mean'):
raise ValueError(f'invalid reduction: {reduction}')
if mask is None:
mask = torch.ones_like(tags, dtype=torch.uint8)
if self.batch_first:
emissions = emissions.transpose(0, 1)
tags = tags.transpose(0, 1)
mask = mask.transpose(0, 1)
# shape: (batch_size,)
numerator = self._compute_score(emissions, tags, mask)
# shape: (batch_size,)
denominator = self._compute_normalizer(emissions, mask)
# shape: (batch_size,)
llh = numerator - denominator
if reduction == 'none':
return llh
if reduction == 'sum':
return llh.sum()
if reduction == 'mean':
return llh.mean()
assert reduction == 'token_mean'
return llh.sum() / mask.type_as(emissions).sum()
def forward(self, emissions: torch.Tensor,
mask: Optional[torch.ByteTensor] = None) -> List[List[int]]:
"""Find the most likely tag sequence using Viterbi algorithm.
Args:
emissions (`~torch.Tensor`): Emission score tensor of size
``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,
``(batch_size, seq_length, num_tags)`` otherwise.
mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``
if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
Returns:
List of list containing the best tag sequence for each batch.
"""
self._validate(emissions, mask=mask)
if mask is None:
mask = emissions.new_ones(emissions.shape[:2], dtype=torch.uint8)
if self.batch_first:
emissions = emissions.transpose(0, 1)
mask = mask.transpose(0, 1)
return self._viterbi_decode(emissions, mask)
def _validate(
self,
emissions: torch.Tensor,
tags: Optional[torch.LongTensor] = None,
mask: Optional[torch.ByteTensor] = None) -> None:
if emissions.dim() != 3:
raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
if emissions.size(2) != self.num_tags:
raise ValueError(
f'expected last dimension of emissions is {self.num_tags}, '
f'got {emissions.size(2)}')
if tags is not None:
if emissions.shape[:2] != tags.shape:
raise ValueError(
'the first two dimensions of emissions and tags must match, '
f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')
if mask is not None:
if emissions.shape[:2] != mask.shape:
raise ValueError(
'the first two dimensions of emissions and mask must match, '
f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
no_empty_seq = not self.batch_first and mask[0].all()
no_empty_seq_bf = self.batch_first and mask[:, 0].all()
if not no_empty_seq and not no_empty_seq_bf:
raise ValueError('mask of the first timestep must all be on')
def _compute_score(
self, emissions: torch.Tensor, tags: torch.LongTensor,
mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# tags: (seq_length, batch_size)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and tags.dim() == 2
assert emissions.shape[:2] == tags.shape
assert emissions.size(2) == self.num_tags
assert mask.shape == tags.shape
assert mask[0].all()
seq_length, batch_size = tags.shape
mask = mask.type_as(emissions)
# Start transition score and first emission
# shape: (batch_size,)
score = self.start_transitions[tags[0]]
score += emissions[0, torch.arange(batch_size), tags[0]]
for i in range(1, seq_length):
# Transition score to next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += self.transitions[tags[i - 1], tags[i]] * mask[i]
# Emission score for next tag, only added if next timestep is valid (mask == 1)
# shape: (batch_size,)
score += emissions[i, torch.arange(batch_size), tags[i]] * mask[i]
# End transition score
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
# shape: (batch_size,)
last_tags = tags[seq_ends, torch.arange(batch_size)]
# shape: (batch_size,)
score += self.end_transitions[last_tags]
return score
def _compute_normalizer(
self, emissions: torch.Tensor, mask: torch.ByteTensor) -> torch.Tensor:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and mask.dim() == 2
assert emissions.shape[:2] == mask.shape
assert emissions.size(2) == self.num_tags
assert mask[0].all()
seq_length = emissions.size(0)
# Start transition score and first emission; score has size of
# (batch_size, num_tags) where for each batch, the j-th column stores
# the score that the first timestep has tag j
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
for i in range(1, seq_length):
# Broadcast score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emissions = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the sum of scores of all
# possible tag sequences so far that end with transitioning from tag i to tag j
# and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emissions
# Sum over all possible current tags, but we're in score space, so a sum
# becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
# all possible tag sequences so far, that end in tag i
# shape: (batch_size, num_tags)
next_score = torch.logsumexp(next_score, dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
# End transition score
# shape: (batch_size, num_tags)
score += self.end_transitions
# Sum (log-sum-exp) over all possible tags
# shape: (batch_size,)
return torch.logsumexp(score, dim=1)
def _viterbi_decode(self, emissions: torch.FloatTensor,
mask: torch.ByteTensor) -> List[List[int]]:
# emissions: (seq_length, batch_size, num_tags)
# mask: (seq_length, batch_size)
assert emissions.dim() == 3 and mask.dim() == 2
assert emissions.shape[:2] == mask.shape
assert emissions.size(2) == self.num_tags
assert mask[0].all()
seq_length, batch_size = mask.shape
# Start transition and first emission
# shape: (batch_size, num_tags)
score = self.start_transitions + emissions[0]
history = []
# score is a tensor of size (batch_size, num_tags) where for every batch,
# value at column j stores the score of the best tag sequence so far that ends
# with tag j
# history saves where the best tags candidate transitioned from; this is used
# when we trace back the best tag sequence
# Viterbi algorithm recursive case: we compute the score of the best tag sequence
# for every possible next tag
for i in range(1, seq_length):
# Broadcast viterbi score for every possible next tag
# shape: (batch_size, num_tags, 1)
broadcast_score = score.unsqueeze(2)
# Broadcast emission score for every possible current tag
# shape: (batch_size, 1, num_tags)
broadcast_emission = emissions[i].unsqueeze(1)
# Compute the score tensor of size (batch_size, num_tags, num_tags) where
# for each sample, entry at row i and column j stores the score of the best
# tag sequence so far that ends with transitioning from tag i to tag j and emitting
# shape: (batch_size, num_tags, num_tags)
next_score = broadcast_score + self.transitions + broadcast_emission
# Find the maximum score over all possible current tag
# shape: (batch_size, num_tags)
next_score, indices = next_score.max(dim=1)
# Set score to the next score if this timestep is valid (mask == 1)
# and save the index that produces the next score
# shape: (batch_size, num_tags)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
history.append(indices)
# End transition score
# shape: (batch_size, num_tags)
score += self.end_transitions
# Now, compute the best path for each sample
# shape: (batch_size,)
seq_ends = mask.long().sum(dim=0) - 1
best_tags_list = []
for idx in range(batch_size):
# Find the tag which maximizes the score at the last timestep; this is our best tag
# for the last timestep
_, best_last_tag = score[idx].max(dim=0)
best_tags = [best_last_tag.item()]
# We trace back where the best last tag comes from, append that to our best tag
# sequence, and trace it back again, and so on
for hist in reversed(history[:seq_ends[idx]]):
best_last_tag = hist[idx][best_tags[-1]]
best_tags.append(best_last_tag.item())
# Reverse the order because we start from the last timestep
best_tags.reverse()
best_tags_list.append(best_tags)
for idx, best_tags in enumerate(best_tags_list):
padding_length = self.max_length - len(best_tags)
best_tags.extend([self.tag_to_ix[SequenceLabelConfig.PAD_TAG]] * padding_length)
return best_tags_list
class BiLSTM_CRF(torch.nn.Module):
"""bilstm crf model"""
def __init__(self, tag_to_ix, max_length, hidden_dim, device):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = 768
self.max_length = max_length
self.hidden_dim = hidden_dim
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
self.bert = BertModel.from_pretrained('bert-base-chinese')
self.lstm = torch.nn.LSTM(self.embedding_dim, hidden_dim // 2,
num_layers=1, bidirectional=True, batch_first=True)
# self.crf = CRF(self.tagset_size, tag_to_ix)
self.crf = CRF(self.tagset_size, self.tag_to_ix, max_length=self.max_length, batch_first=True, device=device)
# Maps the output of the LSTM into tag space.
self.hidden2tag = torch.nn.Linear(hidden_dim, self.tagset_size)
self.device = device
def init_hidden(self, batch_size):
return (torch.randn(2, batch_size, self.hidden_dim // 2).to(self.device),
torch.randn(2, batch_size, self.hidden_dim // 2).to(self.device))
def _get_lstm_features(self, input_ids: Optional[Tensor], attention_mask: Optional[Tensor],
token_type_ids: Optional[Tensor]):
# Get the emission scores from the BiLSTM
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
embedding = outputs.last_hidden_state
batch_size, sequece_length, embedding_dim = embedding.shape
self.hidden = self.init_hidden(batch_size)
lstm_out, self.hidden = self.lstm(embedding, self.hidden)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats, attention_mask.byte()
def forward(self, input_ids: Optional[Tensor], attention_mask: Optional[Tensor],
token_type_ids: Optional[Tensor]): # dont confuse this with _forward_alg above.
lstm_feats, mask = self._get_lstm_features(input_ids, attention_mask, token_type_ids)
# Find the best path, given the features.
tag_seq = self.crf(lstm_feats, mask=mask)
return torch.tensor(tag_seq).to(self.device)
def loss(self, input_ids: Optional[Tensor], attention_mask: Optional[Tensor],
token_type_ids: Optional[Tensor], tags: Optional[Tensor]):
"""
feats: size=(batch_size, seq_len, tag_size)
mask: size=(batch_size, seq_len)
tags: size=(batch_size, seq_len)
:return:
"""
lstm_feats, mask = self._get_lstm_features(input_ids, attention_mask, token_type_ids)
loss_value = self.crf.neg_log_likelihood_loss(lstm_feats, tags, mask=mask)
batch_size = lstm_feats.size(0)
loss_value /= float(batch_size)
return -loss_value
def summuary(self):
print("Model structure: ", self, "\n\n")
for name, param in self.named_parameters():
print(f"Layer: {name} | Size: {param.size()} | Values : {param[:2]} \n")