-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmerge_moe_lora.py
95 lines (71 loc) · 2.87 KB
/
merge_moe_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from camelidae.configuration_camelidae import CamelidaeConfig
from camelidae.modeling_camelidae import LlamaForCausalLM
from peft import PeftModel
import torch
def merge_lora_to_base_model():
from transformers_utils import get_keys_to_not_convert, _load_pretrained_model
import transformers.utils.bitsandbytes
import transformers.modeling_utils
transformers.utils.bitsandbytes.get_keys_to_not_convert = get_keys_to_not_convert
transformers.modeling_utils.PreTrainedModel._load_pretrained_model = (
_load_pretrained_model
)
# Adjust to your corresponding path
model_path = "./"
peft_path="./adapter_model/"
moe_path="./moe_model.bin"
save_path = "./"
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path, use_fast=False, trust_remote_code=True
)
model_config = CamelidaeConfig.from_pretrained(model_path)
model_config.pretraining_tp = 1 ## without tensor parallelism rank
# Place the corresponding two files in the save_path
model_config.auto_map = {
"AutoConfig": "configuration_camelidae.CamelidaeConfig",
"AutoModelForCausalLM": "modeling_camelidae.LlamaForCausalLM"
}
# Camelidae Config
model_config.moe_dtype = "bfloat16"
model_config.adapter_dim = 512
model_config.topk = 2
model_config.moe_scaling = 0.25
model_config.num_experts = 8
model_config.output_router_logits = False
model = LlamaForCausalLM.from_pretrained(
model_path,
config=model_config,
torch_dtype=torch.bfloat16,
device_map={'': 'cpu'}
)
moe_weights = torch.load(moe_path, map_location=torch.device("cpu"))
weights_dict = {}
for k, v in moe_weights.items():
new_k = k.replace("base_model.model.", "") if "base_model.model." in k else k
weights_dict[new_k] = v
model.load_state_dict(weights_dict, strict=False)
model = PeftModel.from_pretrained(
model,
peft_path,
torch_dtype=torch.bfloat16,
device_map={'': 'cpu'}
)
model = model.merge_and_unload()
tokenizer.save_pretrained(save_path)
model.save_pretrained(save_path)
def test_loading():
# Merge model saved path
path = ""
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", trust_remote_code=True)
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params/(1000000000):.2f}B total parameters.')
inputs = tokenizer('### Human:\nHow are you?\n### Assistant:\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
if __name__ == '__main__':
merge_lora_to_base_model()
test_loading()