-
Notifications
You must be signed in to change notification settings - Fork 8.3k
/
Copy pathmodel.py
1398 lines (1206 loc) · 44.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2024 X.AI Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import logging
import re
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
import haiku as hk
import jax
import jax.experimental.maps
import jax.numpy as jnp
from jax import config, tree_util
from jax.experimental.shard_map import shard_map
from jax.lax import with_sharding_constraint as pjit_sharding_constraint
from jax.sharding import PartitionSpec
from jax.sharding import PartitionSpec as P
config.update("jax_spmd_mode", "allow_all")
logger = logging.getLogger(__name__)
rank_logger = logging.getLogger("rank")
@dataclass
class QuantizedWeight8bit:
weight: jnp.array
scales: jnp.array
@property
def shape(self):
return self.weight.shape
tree_util.register_pytree_node(
QuantizedWeight8bit,
lambda qw: ([qw.weight, qw.scales], ()),
lambda _, children: QuantizedWeight8bit(children[0], children[1]),
)
class TrainingState(NamedTuple):
"""Container for the training state."""
params: hk.Params
def _match(qs, ks):
"""Return True if regexes in qs match any window of strings in tuple ks."""
# compile regexes and force complete match
qts = tuple(map(lambda x: re.compile(x + "$"), qs))
for i in range(len(ks) - len(qs) + 1):
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
if matches and all(matches):
return True
return False
def with_sharding_constraint(x, constraint):
if jax.experimental.maps.thread_resources.env.physical_mesh.empty:
return x
else:
return pjit_sharding_constraint(x, constraint)
def cast_bfloat16(x):
if x.dtype.kind == "f":
return x.astype(jnp.bfloat16)
else:
return x
def ffn_size(emb_size, widening_factor):
_ffn_size = int(widening_factor * emb_size) * 2 // 3
_ffn_size = _ffn_size + (8 - _ffn_size) % 8 # ensure it's a multiple of 8
logger.debug(f"emd_size: {emb_size} adjusted ffn_size: {_ffn_size}")
return _ffn_size
def apply_rules(rules):
def _apply_rules(path, value):
del value # Unused.
path_list = [str(i.key).split("/") for i in path if isinstance(i, jax.tree_util.DictKey)]
flattened_path = jax.tree_util.tree_flatten(path_list)[0]
for rule, replacement in rules:
if _match(rule, flattened_path):
if isinstance(replacement, PartitionSpec):
if "layer_stack" in flattened_path:
replacement = PartitionSpec(None, *replacement)
rank_logger.debug(f"Apply {replacement} to {flattened_path} with rule {rule}")
return replacement
rank_logger.info(f"{flattened_path} no matching found!")
return None
return _apply_rules
TRANSFORMER_PARTITION_RULES = [
# attention
(("multi_head_attention", "(query|key|value)", "w"), P("data", "model")),
(("multi_head_attention", "(query|key|value)", "b"), P(None)),
(("multi_head_attention", "linear", "w"), P("model", "data")),
(("multi_head_attention", "linear", "b"), P(None)),
# mlp
((r"decoder_layer_[0-9]+", "linear", "w"), P("data", "model")),
((r"decoder_layer_[0-9]+", "linear", "b"), P(None)),
((r"decoder_layer_[0-9]+", "linear_v", "w"), P("data", "model")),
((r"decoder_layer_[0-9]+", "linear_v", "b"), P(None)),
(
(r"decoder_layer_[0-9]+", "linear_1", "w"),
P(
"model",
"data",
),
),
((r"decoder_layer_[0-9]+", "linear_1", "b"), P(None)),
# layer norms
((r"decoder_layer_[0-9]+", "layer_norm", "offset"), P(None)),
((r"decoder_layer_[0-9]+", "layer_norm", "scale"), P(None)),
((r"decoder_layer_[0-9]+", "layer_norm_1", "offset"), P(None)),
((r"decoder_layer_[0-9]+", "layer_norm_1", "scale"), P(None)),
# rms norms
((r"decoder_layer_[0-9]+", "rms_norm", "scale"), P(None)),
((r"decoder_layer_[0-9]+", "rms_norm_1", "scale"), P(None)),
((r"decoder_layer_[0-9]+", "rms_norm_2", "scale"), P(None)),
((r"decoder_layer_[0-9]+", "rms_norm_3", "scale"), P(None)),
# router
(("router", "w"), P("data")),
# moe mlp
(("moe", "linear", "w"), P(None, "data", "model")),
(("moe", "linear", "b"), P(None)),
(("moe", "linear_v", "w"), P(None, "data", "model")),
(("moe", "linear_v", "b"), P(None)),
(("moe", "linear_1", "w"), P(None, "model", "data")),
(("moe", "linear_1", "b"), P(None)),
# layer norms
(("moe", "layer_norm", "offset"), P(None)),
(("moe", "layer_norm", "scale"), P(None)),
(("moe", "layer_norm_1", "offset"), P(None)),
(("moe", "layer_norm_1", "scale"), P(None)),
# rms norms
(("moe", "rms_norm", "scale"), P(None)),
(("moe", "rms_norm_1", "scale"), P(None)),
(("moe", "rms_norm_2", "scale"), P(None)),
(("moe", "rms_norm_3", "scale"), P(None)),
]
LM_PARTITION_RULES = [
# Embedding layer.
(
("language_model", "positional_embeddings"),
P(None, ("data", "model")),
),
(
("language_model", "in_out_embed", "embeddings"),
P(None, ("data", "model")),
),
# Final RMSNorm.
(("language_model", "rms_norm"), P(None)),
]
TOP_K = 8
class KVMemory(NamedTuple):
k: Optional[jax.Array]
v: Optional[jax.Array]
step: Optional[jax.Array]
def init_layer_memories(
batch_size: int,
sequence_len: int,
num_kv_heads: int,
key_size: int,
num_layers: int,
step: Optional[jax.Array] = None,
dtype=jnp.bfloat16,
):
return [
KVMemory(
k=jnp.zeros((batch_size, sequence_len, num_kv_heads, key_size), dtype=dtype),
v=jnp.zeros((batch_size, sequence_len, num_kv_heads, key_size), dtype=dtype),
step=step,
)
for _ in range(num_layers)
]
class Memory(NamedTuple):
# Self-attention key/value cache.
layers: List[KVMemory]
class Router(hk.Module):
def __init__(
self,
num_selected_experts: int,
data_axis: Union[str, Tuple[str, ...]] = "data",
model_axis: Union[str, Tuple[str, ...]] = "model",
shard_activations: bool = False,
mesh: Any = None,
name: str = "router",
):
super().__init__(name)
self.shard_activations = shard_activations
self.data_axis = data_axis
self.model_axis = model_axis
self.mesh = mesh
self.num_selected_experts = num_selected_experts
def compute_routing_prob(
self, inputs: jax.Array, padding_mask: Optional[jax.Array], num_experts: int
):
return self._compute_routing_prob(inputs, padding_mask, num_experts)
@hk.transparent
def _compute_routing_prob(
self,
inputs: jax.Array,
padding_mask: Optional[jax.Array],
num_experts: int,
):
# Using fp32 for the routing prob computation.
inputs = jax.lax.convert_element_type(inputs, jnp.float32)
# [batch_size, seq_len, num_experts]
routing_logits = self._router_weights(inputs, num_experts, sharding=P("data"))
assert routing_logits.dtype == jnp.float32
routing_probs = jax.nn.softmax(routing_logits)
if padding_mask is not None:
routing_probs *= padding_mask
return routing_probs, routing_logits, 0
@hk.transparent
def _router_weights(
self,
x: jax.Array,
num_experts: int,
sharding: Optional[P] = None,
):
fprop_dtype = x.dtype
if not x.shape:
raise ValueError("Input must not be scalar.")
input_size = self.input_size = x.shape[-1]
w = hk.get_parameter(
"w", [input_size, num_experts], jnp.float32, init=hk.initializers.Constant(0)
)
if sharding:
w = with_sharding_constraint(w, sharding)
out = jnp.dot(x, w.astype(fprop_dtype))
return out
class MoELayer(hk.Module):
def __init__(
self,
num_experts: int,
layer_fn: Callable,
router: Router,
mesh: Any = None,
shard_activations: bool = False,
data_axis: Union[str, Tuple[str, ...]] = "data",
model_axis: Union[str, Tuple[str, ...]] = "model",
name: Optional[str] = "moe",
):
super().__init__(name)
self.num_experts = num_experts
self.layer_fn = layer_fn
self.router = router
self.mesh = mesh
self.shard_activations = shard_activations
self.data_axis = data_axis
self.model_axis = model_axis
@hk.transparent
def _inference_call(self, inputs: jax.Array, padding_mask: Optional[jax.Array] = None):
routing_probs, _, _ = self.router.compute_routing_prob(
inputs, padding_mask, self.num_experts
)
expert_gate, expert_index = jax.lax.top_k(routing_probs, k=self.router.num_selected_experts)
tmp = jnp.reshape(inputs, (inputs.shape[0] * inputs.shape[1], inputs.shape[2]))
broad_inputs = jnp.tile(tmp[:, jnp.newaxis, :], (1, self.router.num_selected_experts, 1))
broad_inputs = jnp.reshape(
broad_inputs, (broad_inputs.shape[0] * broad_inputs.shape[1], broad_inputs.shape[2])
)
init_fn, _ = hk.transform(self.layer_fn)
vmapped_init_fn = jax.vmap(init_fn, in_axes=0, out_axes=0)
lifted_init_fn = hk.experimental.transparent_lift(vmapped_init_fn)
# Fetch the vmapped params of the DenseBlock.
params = lifted_init_fn(
jax.random.split(jax.random.PRNGKey(1), self.num_experts),
jnp.zeros((self.num_experts, 1, 1, inputs.shape[-1])),
)
# Index and prob are in the shape [m, 2] indicating which token assigned to which experts.
# b: num_expert
# m: token or sequence dim
# k: input embed dim
# n: output embed dim
# e: the number of experts chosen for each token
@functools.partial(
shard_map,
mesh=self.mesh,
in_specs=(
P(self.data_axis, None),
P(None, None, self.model_axis),
P(None, None, self.model_axis),
P(None),
P(None),
),
out_specs=P(self.data_axis, self.model_axis),
check_rep=False,
)
def moe_slow_matmul1(input, weight, scales, index, prob):
weight = weight * scales
one_hot_indices = jax.nn.one_hot(index.reshape(-1), 8, axis=0)
all_expert_output = jnp.einsum("mk,bkn->bmn", input, weight)
output = jnp.einsum("bm,bmn->mn", one_hot_indices, all_expert_output)
return output
@functools.partial(
shard_map,
mesh=self.mesh,
in_specs=(
P(self.data_axis, self.model_axis),
P(None, self.model_axis, None),
P(None, self.model_axis, None),
P(None),
P(None),
),
out_specs=P(self.data_axis, None),
check_rep=False,
)
def moe_slow_matmul2(input, weight, scales, index, prob):
weight = weight * scales
one_hot_indices = jax.nn.one_hot(index.reshape(-1), 8, axis=0)
all_expert_output = jnp.einsum("mk,bkn->bmn", input, weight)
output = jnp.einsum("bm,bmn->mn", one_hot_indices, all_expert_output)
return jax.lax.psum(output, axis_name="model")
if hasattr(params["linear"]["w"], "scales"):
x = moe_slow_matmul1(
broad_inputs,
params["linear_v"]["w"].weight,
params["linear_v"]["w"].scales,
expert_index,
expert_gate,
)
y = moe_slow_matmul1(
broad_inputs,
params["linear"]["w"].weight,
params["linear"]["w"].scales,
expert_index,
expert_gate,
)
y = jax.nn.gelu(y)
out = moe_slow_matmul2(
x * y,
params["linear_1"]["w"].weight,
params["linear_1"]["w"].scales,
expert_index,
expert_gate,
)
out = jnp.reshape(
out,
[
inputs.shape[0],
inputs.shape[1],
self.router.num_selected_experts,
out.shape[-1],
],
)
out = expert_gate[:, :, :, None].astype(jnp.bfloat16) * out
out = jnp.sum(out, axis=2)
out = out.astype(jnp.bfloat16)
else:
# This is only here so that we can construct a valid init_fn with this code.
return inputs
return out
def __call__(self, inputs: jax.Array, padding_mask: jax.Array):
return self._inference_call(inputs)
class MHAOutput(NamedTuple):
"""Outputs of the multi-head attention operation."""
embeddings: jax.Array
memory: Any
class DecoderOutput(NamedTuple):
embeddings: jax.Array
memory: Any
class TransformerOutput(NamedTuple):
embeddings: jax.Array
memory: Any
@dataclass
class TransformerConfig:
emb_size: int
key_size: int
num_q_heads: int
num_kv_heads: int
num_layers: int
vocab_size: int = 128 * 1024
widening_factor: float = 4.0
attn_output_multiplier: float = 1.0
name: Optional[str] = None
num_experts: int = -1
capacity_factor: float = 1.0
num_selected_experts: int = 1
init_scale: float = 1.0
shard_activations: bool = False
# Used for activation sharding.
data_axis: Union[str, Tuple[str, ...]] = "data"
model_axis: Union[str, Tuple[str, ...]] = "model"
def __post_init__(self):
if isinstance(self.data_axis, list):
self.data_axis = tuple(self.data_axis)
if isinstance(self.model_axis, list):
self.model_axis = tuple(self.model_axis)
def partition_rules(self):
return TRANSFORMER_PARTITION_RULES
def make(self, mesh=None) -> "Transformer":
data_axis = tuple(self.data_axis) if isinstance(self.data_axis, list) else self.data_axis
model_axis = (
tuple(self.model_axis) if isinstance(self.model_axis, list) else self.model_axis
)
return Transformer(
num_q_heads=self.num_q_heads,
num_kv_heads=self.num_kv_heads,
widening_factor=self.widening_factor,
key_size=self.key_size,
init_scale=self.init_scale,
mesh=mesh,
attn_output_multiplier=self.attn_output_multiplier,
shard_activations=self.shard_activations,
num_layers=self.num_layers,
num_experts=self.num_experts,
num_selected_experts=self.num_selected_experts,
data_axis=data_axis,
model_axis=model_axis,
)
def get_memory_sharding(self):
return Memory(
layers=[
KVMemory(
k=P(self.data_axis, self.model_axis),
v=P(self.data_axis, self.model_axis),
step=P(self.data_axis),
)
for _ in range(self.num_layers)
],
)
def hk_rms_norm(
x: jax.Array,
fixed_scale=False,
sharding=P(None),
) -> jax.Array:
"""Applies a unique LayerNorm to x with default settings."""
ln = RMSNorm(axis=-1, create_scale=not fixed_scale, sharding=sharding)
return ln(x)
def make_attention_mask(
query_input: jax.Array,
key_input: jax.Array,
pairwise_fn: Callable[..., Any] = jnp.multiply,
dtype: Any = jnp.bfloat16,
):
"""Mask-making helper for attention weights.
In case of 1d inputs (i.e., `[batch..., len_q]`, `[batch..., len_kv]`, the
attention weights will be `[batch..., heads, len_q, len_kv]` and this
function will produce `[batch..., 1, len_q, len_kv]`.
Args:
query_input: a batched, flat input of query_length size
key_input: a batched, flat input of key_length size
pairwise_fn: broadcasting elementwise comparison function
dtype: mask return dtype
Returns:
A `[batch..., 1, len_q, len_kv]` shaped mask for 1d attention.
"""
mask = pairwise_fn(jnp.expand_dims(query_input, axis=-1), jnp.expand_dims(key_input, axis=-2))
mask = jnp.expand_dims(mask, axis=-3)
return mask.astype(dtype)
class Linear(hk.Linear):
def __init__(
self,
output_size: int,
with_bias: bool = True,
sharding: Optional[P] = None,
mesh: Any = None,
name: Optional[str] = None,
shard_axis: int = 0,
):
super().__init__(
output_size=output_size,
with_bias=with_bias,
name=name,
)
self.sharding = sharding
self.mesh = mesh
self.shard_axis = shard_axis
def __call__(
self,
inputs: jax.Array,
) -> jax.Array:
"""Computes a linear transform of the input."""
fprop_dtype = inputs.dtype
if not inputs.shape:
raise ValueError("Input must not be scalar.")
input_size = self.input_size = inputs.shape[-1]
output_size = self.output_size
w = hk.get_parameter(
"w", [input_size, output_size], jnp.float32, init=hk.initializers.Constant(0)
)
if hasattr(w, "scales"):
shape = inputs.shape
inputs = jnp.reshape(inputs, (-1, shape[-1]))
@functools.partial(
shard_map,
mesh=self.mesh,
in_specs=(self.sharding, self.sharding),
out_specs=self.sharding,
check_rep=False,
)
def mul(w, s):
return w.astype(s.dtype) * s
w = mul(w.weight, w.scales)
out = jnp.dot(inputs, w.astype(fprop_dtype))
if self.with_bias:
b = hk.get_parameter(
"b", [self.output_size], jnp.float32, init=hk.initializers.Constant(0)
)
b = jnp.broadcast_to(b, out.shape)
out = out + b.astype(fprop_dtype)
return out
class RMSNorm(hk.RMSNorm):
def __init__(
self,
axis: Union[int, Sequence[int], slice],
eps: float = 1e-5,
name: Optional[str] = None,
create_scale: bool = True,
sharding: Optional[P] = None,
):
super().__init__(axis, eps, create_scale=create_scale, name=name)
self.sharding = sharding
def __call__(self, inputs: jax.Array):
fprop_dtype = inputs.dtype
param_shape = (inputs.shape[-1],)
if self.create_scale:
scale = hk.get_parameter(
"scale",
param_shape,
dtype=jnp.float32,
init=hk.initializers.Constant(0),
)
if self.sharding:
scale = with_sharding_constraint(scale, self.sharding)
scale = jnp.broadcast_to(scale.astype(jnp.float32), inputs.shape)
else:
scale = 1.0
inputs = inputs.astype(jnp.float32)
scale = scale.astype(jnp.float32)
mean_squared = jnp.mean(jnp.square(inputs), axis=[-1], keepdims=True)
mean_squared = jnp.broadcast_to(mean_squared, inputs.shape)
normed_inputs = inputs * jax.lax.rsqrt(mean_squared + self.eps)
outputs = scale * normed_inputs
return outputs.astype(fprop_dtype)
def rotate_half(
x: jax.Array,
) -> jax.Array:
"""Obtain the rotated counterpart of each feature"""
x1, x2 = jnp.split(x, 2, axis=-1)
return jnp.concatenate((-x2, x1), axis=-1)
class RotaryEmbedding(hk.Module):
"""Applies rotary embeddings (RoPE) to the input sequence tensor,
as described in https://arxiv.org/abs/2104.09864.
Attributes:
dim (int): Dimensionality of the feature vectors
base_exponent (int): Base exponent to compute embeddings from
"""
def __init__(
self,
dim: int,
name: Optional[str] = None,
base_exponent: int = 10000,
):
super().__init__(name)
self.dim = dim
self.base_exponent = base_exponent
assert self.dim % 2 == 0
def __call__(
self,
x: jax.Array,
seq_dim: int,
offset: jax.Array,
const_position: Optional[int] = None,
t: Optional[jax.Array] = None,
) -> jax.Array:
fprop_dtype = x.dtype
# Compute the per-dimension frequencies
exponents = jnp.arange(0, self.dim, 2, dtype=jnp.float32)
inv_freq = jnp.asarray(
1.0 / (self.base_exponent ** (exponents / self.dim)), dtype=jnp.float32
)
if jnp.shape(offset) == ():
# Offset can be a scalar or one offset per batch element.
offset = jnp.expand_dims(offset, 0)
# Compute the per element phase (to pass into sin and cos)
if const_position:
t = const_position * jnp.ones(
(
1,
x.shape[seq_dim],
),
dtype=jnp.float32,
)
elif t is None:
t = jnp.arange(x.shape[seq_dim], dtype=jnp.float32) + jnp.expand_dims(offset, -1)
phase = jnp.einsum("bi,j->bij", t, inv_freq)
phase = jnp.tile(phase, reps=(1, 2))[:, :, None, :]
x = x * jnp.cos(phase) + rotate_half(x) * jnp.sin(phase)
x = x.astype(fprop_dtype)
return x
class MultiHeadAttention(hk.Module):
def __init__(
self,
num_q_heads: int,
num_kv_heads: int,
key_size: int,
*,
with_bias: bool = True,
value_size: Optional[int] = None,
model_size: Optional[int] = None,
attn_output_multiplier: 1.0,
data_axis: Union[str, Tuple[str, ...]] = "data",
model_axis: Union[str, Tuple[str, ...]] = "model",
name: Optional[str] = None,
):
super().__init__(name=name)
self.num_q_heads = num_q_heads
self.num_kv_heads = num_kv_heads
self.key_size = key_size
self.value_size = value_size or key_size
self.model_size = model_size or key_size * num_q_heads
self.data_axis = data_axis
self.model_axis = model_axis
self.attn_output_multiplier = attn_output_multiplier
self.with_bias = with_bias
def __call__(
self,
query: jax.Array,
key: Optional[jax.Array],
value: Optional[jax.Array],
mask: Optional[jax.Array] = None,
kv_memory: Optional[KVMemory] = None,
mesh: Any = None,
) -> MHAOutput:
# In shape hints below, we suppress the leading dims [...] for brevity.
# Hence e.g. [A, B] should be read in every case as [..., A, B].
sequence_length = query.shape[1]
projection = self._linear_projection
use_memory = False
if kv_memory is not None:
if kv_memory.k is None:
assert kv_memory.v is None
assert key is not None
assert value is not None
else:
assert kv_memory.v is not None
use_memory = True
else:
assert key is not None
assert value is not None
# Check that the keys and values have consistent batch size and sequence length.
if not use_memory:
assert key.shape[:2] == value.shape[:2], f"key/value shape: {key.shape}/{value.shape}"
if mask is not None:
assert mask.ndim == 4
assert mask.shape[0] in {
1,
query.shape[0],
}, f"mask/query shape: {mask.shape}/{query.shape}"
if not use_memory:
assert key.shape[0] in {
1,
query.shape[0],
}, f"key/query shape: {key.shape}/{query.shape}"
assert mask.shape[1] == 1
assert mask.shape[2] in {
1,
query.shape[1],
}, f"mask/query shape: {mask.shape}/{query.shape}"
if not use_memory:
assert mask.shape[3] in {
1,
key.shape[1],
}, f"mask/query shape: {mask.shape}/{key.shape}"
# Compute key/query/values (overload K/Q/V to denote the respective sizes).
assert self.num_q_heads % self.num_kv_heads == 0
query_heads = projection(
query,
self.key_size,
self.num_q_heads,
name="query",
sharding=P("data", "model"),
mesh=mesh,
) # [B, T', H, Q=K]
new_memory = None
key_heads = projection(
key,
self.key_size,
self.num_kv_heads,
name="key",
sharding=P("data", "model"),
mesh=mesh,
) # [B, T, H, K]
value_heads = projection(
value,
self.value_size,
self.num_kv_heads,
name="value",
sharding=P("data", "model"),
mesh=mesh,
) # [B, T, H, V]
rotate = RotaryEmbedding(dim=self.key_size, base_exponent=int(1e4))
key_heads = rotate(key_heads, seq_dim=1, offset=(kv_memory.step if kv_memory else 0))
query_heads = rotate(query_heads, seq_dim=1, offset=(kv_memory.step if kv_memory else 0))
@functools.partial(jax.vmap)
def update_into(mem, start, update):
return jax.lax.dynamic_update_slice_in_dim(mem, update, start, axis=0)
if kv_memory:
if mesh is not None:
@functools.partial(
shard_map,
mesh=mesh,
in_specs=(
P("data", None, "model"),
P("data"),
P("data", None, "model"),
),
out_specs=P("data", None, "model"),
check_rep=False,
)
def update_into_shmap(mems, starts, updates):
return update_into(mems, starts, updates)
key_heads = update_into_shmap(kv_memory.k, kv_memory.step, key_heads)
value_heads = update_into_shmap(kv_memory.v, kv_memory.step, value_heads)
else:
key_heads = update_into(kv_memory.k, kv_memory.step, key_heads)
value_heads = update_into(kv_memory.v, kv_memory.step, value_heads)
new_step = kv_memory.step + sequence_length
memory_mask = jnp.arange(kv_memory.k.shape[1]) < new_step[:, None]
memory_mask = memory_mask[:, None, None, :] # [B, H, T, T]
if mask is not None:
mask = memory_mask * mask
else:
mask = memory_mask
new_memory = KVMemory(
k=key_heads,
v=value_heads,
step=new_step,
)
# Add separate dimension for grouped query heads.
query_heads = with_sharding_constraint(query_heads, P(self.data_axis, None, "model", None))
key_heads = with_sharding_constraint(key_heads, P(self.data_axis, None, "model", None))
value_heads = with_sharding_constraint(value_heads, P(self.data_axis, None, "model", None))
b, t, h, d = query_heads.shape
_, _, kv_h, _ = key_heads.shape
assert h % kv_h == 0, f"query_heads {h} must be a multiple of kv_heads {kv_h}"
query_heads = jnp.reshape(query_heads, (b, t, kv_h, h // kv_h, d))
query_heads = with_sharding_constraint(
query_heads, P(self.data_axis, None, "model", None, None)
)
# Compute attention weights.
# Attention softmax is always carried out in fp32.
attn_logits = jnp.einsum("...thHd,...Thd->...hHtT", query_heads, key_heads).astype(
jnp.float32
)
attn_logits *= self.attn_output_multiplier
max_attn_val = jnp.array(30.0, dtype=attn_logits.dtype)
attn_logits = max_attn_val * jnp.tanh(attn_logits / max_attn_val)
mask = mask[:, :, None, :, :]
if mask is not None:
if mask.ndim != attn_logits.ndim:
raise ValueError(
f"Mask dimensionality {mask.ndim} must match logits dimensionality "
f"{attn_logits.ndim} for {mask.shape}/{attn_logits.shape}."
)
attn_logits = jnp.where(mask, attn_logits, -1e30)
attn_weights = jax.nn.softmax(attn_logits).astype(query.dtype) # [H, T', T]
# Weight the values by the attention and flatten the head vectors.
attn = jnp.einsum("...hHtT,...Thd->...thHd", attn_weights, value_heads)
attn = with_sharding_constraint(attn, P(self.data_axis, None, "model", None, None))
leading_dims = attn.shape[:2]
attn = jnp.reshape(attn, (*leading_dims, -1)) # [T', H*V]
attn = with_sharding_constraint(attn, P(self.data_axis, None, "model"))
# Apply another projection to get the final embeddings.
final_projection = Linear(
self.model_size,
with_bias=False,
sharding=P("model", "data"),
mesh=mesh,
)
return MHAOutput(final_projection(attn), new_memory)
@hk.transparent
def _linear_projection(
self,
x: jax.Array,
head_size: int,
num_heads: int,
sharding: Optional[P] = None,
name: Optional[str] = None,
mesh: Any = None,
) -> jax.Array:
y = Linear(
num_heads * head_size,
with_bias=False,
name=name,
sharding=sharding,
mesh=mesh,
)(x)
*leading_dims, _ = x.shape
return y.reshape((*leading_dims, num_heads, head_size))
@dataclass
class MHABlock(hk.Module):
"""A MHA Block"""
num_q_heads: int
num_kv_heads: int
key_size: int
attn_output_multiplier: float = 1.0
mesh: Any = None
data_axis: Union[str, Tuple[str, ...]] = "data"
model_axis: Union[str, Tuple[str, ...]] = "model"
@hk.transparent
def __call__(
self,
inputs: jax.Array, # [B, T, D]
mask: jax.Array, # [B, 1, T, T] or [B, 1, 1, T] or B[1, 1, 1, 1]
layer_memory: Optional[KVMemory],
) -> MHAOutput:
_, _, model_size = inputs.shape
assert mask.ndim == 4, f"shape: {mask.shape}"
assert mask.shape[2] in {1, inputs.shape[1]}, str(mask.shape)
assert mask.shape[3] in {1, inputs.shape[1]}, str(mask.shape)
side_input = inputs
def attn_block(query, key, value, mask, memory) -> MHAOutput:
return MultiHeadAttention(
num_q_heads=self.num_q_heads,
num_kv_heads=self.num_kv_heads,
key_size=self.key_size,
model_size=model_size,
data_axis=self.data_axis,
model_axis=self.model_axis,
attn_output_multiplier=self.attn_output_multiplier,
)(
query,
key,
value,
mask,
memory,
mesh=self.mesh,
)
attn_output = attn_block(inputs, side_input, side_input, mask, layer_memory)
h_attn = attn_output.embeddings
return attn_output._replace(embeddings=h_attn)
@dataclass
class DenseBlock(hk.Module):
num_q_heads: int
num_kv_heads: int
key_size: int
widening_factor: float = 4.0
sharding_constraint: bool = False
mesh: Any = None
@hk.transparent
def __call__(
self,
inputs: jax.Array, # [B, T, D]
) -> jax.Array: # [B, T, D]
_, _, model_size = inputs.shape
h_v = Linear(
ffn_size(
model_size,
self.widening_factor,
),
with_bias=False,
mesh=self.mesh,
sharding=P("data", "model"),
name="linear_v",
)(inputs)
h_w1 = jax.nn.gelu(
Linear(
ffn_size(
model_size,
self.widening_factor,
),
with_bias=False,
mesh=self.mesh,
sharding=P("data", "model"),
)(inputs)
)
h_dense = Linear(
model_size,