-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradient_checker.py
387 lines (334 loc) · 15 KB
/
gradient_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
## @package gradient_checker
# Module caffe2.python.gradient_checker
import os
import numpy as np
from caffe2.python import core, workspace, net_drawer
from caffe2.proto import caffe2_pb2
def getGradientForOp(op):
return core.GradientRegistry.GetGradientForOp(
op, [s + '_grad' for s in op.output])
def _get_grad_blob(grad_map, input_to_check):
grad_blob = grad_map[input_to_check]
if isinstance(grad_blob, core.BlobReference):
return workspace.blobs[grad_blob]
# If grad_blob is not a single blob, it should be a gradient slice.
# To make it comparable with the estimiated gradient which is dense,
# we need to first convert grad_blob to dense gradient.
assert isinstance(grad_blob, core.GradientSlice)
dense_grad = 'tmp_dense_grad'
sparse_to_dense_op = core.CreateOperator(
'SparseToDense',
[grad_blob.indices, grad_blob.values, input_to_check],
dense_grad,
)
workspace.RunOperatorOnce(sparse_to_dense_op)
return workspace.blobs[dense_grad]
def _get_grad(net, outputs, outputs_with_grad, input_values, inputs_with_grads):
grad_net = net.Clone(net.Name() + "_copy")
grad_map = grad_net.AddGradientOperators(outputs_with_grad)
for name, value in (input_values or {}).items():
workspace.blobs[name] = value
for input_to_check in inputs_with_grads:
assert input_to_check in grad_map, (
'{} has no gradient, cannot check net gradient.'.format(
input_to_check))
assert str(input_to_check) in workspace.blobs
workspace.RunNetOnce(grad_net)
forward_results = [(output, workspace.blobs[output]) for output in outputs]
grads = {input_to_check: _get_grad_blob(grad_map, input_to_check)
for input_to_check in inputs_with_grads}
return forward_results, grads, grad_net
def _assert_close(value1, value2, threshold, err_msg=''):
np.testing.assert_allclose(
value1, value2,
atol=threshold, rtol=threshold,
err_msg=err_msg,
)
delta = np.abs(value1 - value2).flatten()
return np.mean(delta), max(delta)
class NetGradientChecker:
@staticmethod
def CompareNets(nets, outputs, outputs_with_grad_ids,
inputs_with_grads, input_values=None,
threshold=0.0000001, print_net_images=False):
def _get_output_with_grad_names(net_outputs):
return [net_outputs[i] for i in outputs_with_grad_ids]
if print_net_images:
for i, net in enumerate(nets):
png = net_drawer.GetPydotGraph(net).create_png()
with open("caffe2_net_forward_" + str(i) + net.Name() + ".png",
'wb') \
as f:
f.write(png)
results = [
_get_grad(net, net_outputs,
_get_output_with_grad_names(net_outputs),
input_values, inputs_with_grads)
for net, net_outputs in zip(nets, outputs)
]
if print_net_images:
_, _, backward_nets = zip(*results)
for i, net in enumerate(backward_nets):
png = net_drawer.GetPydotGraph(net).create_png()
with open("caffe2_net_" + str(i) + net.Name() + ".png", 'wb') \
as f:
f.write(png)
first_net_results, first_net_grads, _ = results[0]
for net_results, net_grads, _ in results[1:]:
assert len(net_results) == len(first_net_results)
for idx, ((blob1, blob_value1), (blob2, blob_value2)) in enumerate(
zip(first_net_results, net_results)):
_assert_close(
blob_value1, blob_value2, threshold,
err_msg="Different forward pass results for output id {}. "
"Corresponding output blobs: {} and {}".format(
idx, blob1, blob2))
assert net_grads.keys() == first_net_grads.keys()
for blob, blob_grad_value in net_grads.items():
_assert_close(
first_net_grads[blob], blob_grad_value, threshold,
err_msg="Different gradients for input {}".format(blob))
@staticmethod
def Check(net, outputs_with_grad, input_values,
input_to_check, step_size=0.0001,
threshold=0.05, print_net=True):
net_results, net_grads, full_net = _get_grad(
net, [], outputs_with_grad, input_values, [input_to_check])
analytic_grad = net_grads[input_to_check]
def GetLoss(new_value):
workspace.blobs[input_to_check] = new_value
workspace.RunNetOnce(full_net)
return sum([
workspace.blobs[output]
for output in outputs_with_grad
]).sum()
def GetValue(dim, delta):
input_value = input_values[input_to_check].copy()
input_value.flat[dim] += delta
return input_value
grad_estimate = np.zeros_like(input_values[input_to_check])
for dim in range(input_values[input_to_check].size):
pos_loss = GetLoss(GetValue(dim, step_size))
neg_loss = GetLoss(GetValue(dim, -step_size))
grad_estimate.flat[dim] = (pos_loss - neg_loss) / step_size / 2
err_msg = "Error in gradient check for net_copy {}".format(
net.Name())
if print_net:
err_msg += ": {}".format(net.Proto())
return _assert_close(analytic_grad, grad_estimate, threshold, err_msg)
class GradientChecker:
"""A gradient checker in Python.
This is not the most efficient way to check gradients, as the Python
interface will involve a lot of copies back and forth operations. Use at your
own risk.
"""
def __init__(
self,
stepsize,
threshold,
device_option=None,
workspace_name="gradient_check",
input_device_options=None,
):
self._stepsize = stepsize
self._threshold = threshold
self._device_option = device_option or caffe2_pb2.DeviceOption()
self._workspace_name = workspace_name
if input_device_options is None:
self._input_device_options = {}
else:
self._input_device_options = input_device_options
def GetLossAndGrad(
self, op, grad_ops, inputs, input_names, input_to_check, grad_name,
outputs_with_grads
):
for i in range(len(inputs)):
workspace.FeedBlob(input_names[i], inputs[i],
self._input_device_options.get(
input_names[i], self._device_option))
x = inputs[input_to_check]
# Run.
workspace.RunOperatorOnce(op)
loss = 0.
# Get Loss and feed in the gradients, run gradient ops.
for idx in outputs_with_grads:
name = op.output[idx]
arr = workspace.FetchBlob(name)
loss += (arr**2).sum()
workspace.FeedBlob(name + '_grad', arr, self._device_option)
loss /= 2.
# Run gradient ops
workspace.RunOperatorsOnce(grad_ops)
# Get gradients
if isinstance(grad_name, core.GradientSlice):
workspace.FeedBlob('zeros', np.zeros_like(x, dtype=np.float32))
workspace.FeedBlob('ones', np.ones(1, dtype=np.float32))
gv_cpu_op = core.CreateOperator(
'EnsureCPUOutput', grad_name.values, grad_name.values + '_cpu',
device_option=self._device_option
)
gi_cpu_op = core.CreateOperator(
'EnsureCPUOutput', grad_name.indices, grad_name.indices + '_cpu',
device_option=self._device_option
)
sparse_to_dense_op = core.CreateOperator(
'ScatterWeightedSum',
[
'zeros', 'ones', grad_name.indices + '_cpu',
grad_name.values + '_cpu', 'ones'
],
'zeros',
)
workspace.RunOperatorOnce(gv_cpu_op)
workspace.RunOperatorOnce(gi_cpu_op)
workspace.RunOperatorOnce(sparse_to_dense_op)
grad = workspace.FetchBlob('zeros')
else:
grad = workspace.FetchBlob(grad_name)
return loss, grad
def CheckSimple(
self,
op,
inputs,
input_to_check,
outputs_with_grads,
grad_ops=None,
input_device_options=None,
ensure_outputs_are_inferred=False,
):
"""Checks the operator in a very simple fashion by stacking a sum of
squares on the top.
Inputs:
op: the operator to be checked.
inputs: the input data in numpy arrays.
input_to_check: an index specifying which input blob we should
check.
outputs_with_grads: indices specifying which output blobs will we
need to check gradients with. For these outputs, we will collect a
squared sum and also feed in their gradients.
grad_operator: the gradient operator. If not given, we will get the
gradient operator from the gradient registry.
input_device_options: an optional mapping from input names to
DeviceOptions (to override the default DeviceOption)
ensure_outputs_are_inferred: if set will assert that the gradient output
shapes matches the inferred shapes
Outputs:
boolean: True if it passes, False if it does not pass.
"""
# Entering the checker workspace
old_ws_name = workspace.CurrentWorkspace()
if self._workspace_name != old_ws_name:
workspace.SwitchWorkspace(self._workspace_name, True)
op.device_option.CopyFrom(self._device_option)
if grad_ops is None:
# TODO(jiayq): use the gradient registration instead of the old
# hack.
grad_ops, g_input = getGradientForOp(op)
_input_device_options = input_device_options or \
core.InferOpBlobDevicesAsDict(op)[0]
# First, feed in the input.
for i, arr in enumerate(inputs):
workspace.FeedBlob(
op.input[i], arr,
_input_device_options.get(
op.input[i], self._device_option))
# Get the loss and gradient for the original.
grad_name = g_input[input_to_check]
loss, grad = self.GetLossAndGrad(
op, grad_ops, inputs, op.input, input_to_check, grad_name,
outputs_with_grads,
)
grad_estimate = np.zeros_like(inputs[input_to_check])
if grad_estimate.shape != grad.shape:
raise Exception(
"Mismatched gradient shapes: estimated ({}), grad ({})".format(
grad_estimate.shape, grad.shape))
if ensure_outputs_are_inferred:
self._assertInferTensorChecks(op, grad_ops)
full_grad_check = os.getenv('CAFFE2_FULL_GRAD_CHECK') == '1'
dims_to_check = inputs[input_to_check].size
for current_dim in range(dims_to_check):
# Grad check is very expensive (as it involves running the op from
# scratch for each of the input tensor elements). Thus, let's
# run it by default only on a small subset of dimensions. Here we
# apply very scientific approach: the first and the last 3 elements
# of each tensor. Pass CAFFE2_FULL_GRAD_CHECK=1 env var to enable
# the full check
if not full_grad_check and current_dim >= 3 and \
current_dim + 3 < dims_to_check:
grad_estimate.flat[current_dim] = grad.flat[current_dim]
continue
# Positive gradient
inputs[input_to_check].flat[current_dim] += self._stepsize
pos_loss, _ = self.GetLossAndGrad(
op, grad_ops, inputs, op.input, input_to_check, grad_name,
outputs_with_grads
)
# Negative gradient
inputs[input_to_check].flat[current_dim] -= self._stepsize * 2
neg_loss, _ = self.GetLossAndGrad(
op, grad_ops, inputs, op.input, input_to_check, grad_name,
outputs_with_grads
)
# Recover the value
inputs[input_to_check].flat[current_dim] += self._stepsize
grad_estimate.flat[current_dim] = (
pos_loss - neg_loss) / self._stepsize / 2
# Now, check correctness
fail_mat = ~np.isclose(
grad, grad_estimate, atol=self._threshold, rtol=self._threshold)
if np.any(fail_mat):
idx = np.flatnonzero(fail_mat)
print('Failed. [idx, grad, grad_estimate] are:')
print(np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T)
ret = False
else:
ret = True
# After finishing, cleaning up things.
if self._workspace_name != old_ws_name:
# We reset the workspace to make sure everything intermediate is
# cleaned up. Note that there is no need to delete a workspace -
# when empty it takes a very limited amount of memory.
workspace.ResetWorkspace()
workspace.SwitchWorkspace(old_ws_name)
return ret, grad, grad_estimate
def _assertInferTensorChecks(self, op, grad_ops):
tmp_net = caffe2_pb2.NetDef()
tmp_net.op.extend([op])
tmp_net.op.extend(grad_ops)
inferred_shapes, inferred_types = workspace.InferShapesAndTypes(
[tmp_net],
nets_proto=True,
)
outputs = set()
for grad_op in grad_ops:
outputs.update(grad_op.output)
for output in outputs:
if output not in inferred_shapes:
raise Exception(
"expected output {} to be inferred".format(output))
blob = workspace.FetchBlob(output)
correct_shape = list(blob.shape)
inferred_shape = list(inferred_shapes[output])
if correct_shape != inferred_shape:
raise Exception(
"Mismatched inferred shape: want({}), got({})".format(
correct_shape, inferred_shape))
if type(blob) is np.ndarray:
if blob.dtype == np.dtype('float64'):
correct_type = caffe2_pb2.TensorProto.DOUBLE
elif blob.dtype == np.dtype('float32'):
correct_type = caffe2_pb2.TensorProto.FLOAT
elif blob.dtype == np.dtype('int32'):
correct_type = caffe2_pb2.TensorProto.INT32
elif blob.dtype == np.dtype('int64'):
correct_type = caffe2_pb2.TensorProto.INT64
else:
correct_type = "unknown {}".format(np.dtype)
else:
correct_type = str(type(blob))
inferred_type = inferred_types[output]
if correct_type != inferred_type:
raise Exception(
"Mismatched inferred type: want({}), got({})".format(
correct_type, inferred_type))