-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathxray_split.py
executable file
·110 lines (71 loc) · 2.17 KB
/
xray_split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from __future__ import print_function, division
import os
import argparse
import errno
import shutil
import torch
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from networks import *
from torch.autograd import Variable
import util
parser = argparse.ArgumentParser(description='PyTorch script for chest xray view classification')
parser.add_argument('-o', '--output', help='output folder where classified images are stored', required=True)
parser.add_argument('-i', '--input', help='input folder where chest x-rays are stored', required=True)
args = parser.parse_args()
def mkdir_p(path):
#function by @tzot from stackoverflow
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def softmax(x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
root_front = os.path.join(args.output, 'front')
root_side = os.path.join(args.output, 'side')
mkdir_p(root_front)
mkdir_p(root_side)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
views = {0: 'front',
1: 'side'}
data_transforms = {
'test': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
}
dataset_dir = args.input
print("| Loading chestViewNet for chest x-ray view classification...")
checkpoint = torch.load('./models/'+'resnet-50.t7')
model = checkpoint['model']
use_gpu = torch.cuda.is_available()
if use_gpu:
model.cuda()
model.eval()
testsets = util.MyFolder(dataset_dir, data_transforms['test'])
testloader = torch.utils.data.DataLoader(
testsets,
batch_size = 1,
shuffle = False,
num_workers=1
)
print("\n| classifying %s..." %dataset_dir)
for batch_idx, (inputs, path) in enumerate(testloader):
if use_gpu:
inputs = inputs.cuda()
inputs = Variable(inputs, volatile=True)
outputs = model(inputs)
softmax_res = softmax(outputs.data.cpu().numpy()[0])
_, predicted = torch.max(outputs.data, 1)
print('%s is %s view' % (path[0], views[predicted.cpu().numpy()[0]]))
if predicted.cpu().numpy()[0] == 0:
shutil.copy2(path[0], root_front)
else:
shutil.copy2(path[0], root_side)