forked from uwnlp/open_type
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
129 lines (118 loc) · 6.02 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import sys
import torch
import torch.nn as nn
from model_utils import sort_batch_by_length, SelfAttentiveSum, SimpleDecoder, MultiSimpleDecoder, CNN
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
sys.path.insert(0, './resources')
import constant
class Model(nn.Module):
def __init__(self, args, answer_num):
super(Model, self).__init__()
self.output_dim = args.rnn_dim * 2
self.mention_dropout = nn.Dropout(args.mention_dropout)
self.input_dropout = nn.Dropout(args.input_dropout)
self.dim_hidden = args.dim_hidden
self.embed_dim = 300
self.mention_dim = 300
self.lstm_type = args.lstm_type
self.enhanced_mention = args.enhanced_mention
if args.enhanced_mention:
self.head_attentive_sum = SelfAttentiveSum(self.mention_dim, 1)
self.cnn = CNN()
self.mention_dim += 50
self.output_dim += self.mention_dim
# Defining LSTM here.
self.attentive_sum = SelfAttentiveSum(args.rnn_dim * 2, 100)
if self.lstm_type == "two":
self.left_lstm = nn.LSTM(self.embed_dim, 100, bidirectional=True, batch_first=True)
self.right_lstm = nn.LSTM(self.embed_dim, 100, bidirectional=True, batch_first=True)
elif self.lstm_type == 'single':
self.lstm = nn.LSTM(self.embed_dim + 50, args.rnn_dim, bidirectional=True,
batch_first=True)
self.token_mask = nn.Linear(4, 50)
self.loss_func = nn.BCEWithLogitsLoss()
self.sigmoid_fn = nn.Sigmoid()
self.goal = args.goal
self.multitask = args.multitask
if args.data_setup == 'joint' and args.multitask:
print("Multi-task learning")
self.decoder = MultiSimpleDecoder(self.output_dim)
else:
self.decoder = SimpleDecoder(self.output_dim, answer_num)
def sorted_rnn(self, sequences, sequence_lengths, rnn):
sorted_inputs, sorted_sequence_lengths, restoration_indices = sort_batch_by_length(sequences, sequence_lengths)
packed_sequence_input = pack_padded_sequence(sorted_inputs,
sorted_sequence_lengths.data.tolist(),
batch_first=True)
packed_sequence_output, _ = rnn(packed_sequence_input, None)
unpacked_sequence_tensor, _ = pad_packed_sequence(packed_sequence_output, batch_first=True)
return unpacked_sequence_tensor.index_select(0, restoration_indices)
def rnn(self, sequences, lstm):
outputs, _ = lstm(sequences)
return outputs.contiguous()
def define_loss(self, logits, targets, data_type):
if not self.multitask or data_type == 'onto':
loss = self.loss_func(logits, targets)
return loss
if data_type == 'wiki':
gen_cutoff, fine_cutoff, final_cutoff = constant.ANSWER_NUM_DICT['gen'], constant.ANSWER_NUM_DICT['kb'], \
constant.ANSWER_NUM_DICT[data_type]
else:
gen_cutoff, fine_cutoff, final_cutoff = constant.ANSWER_NUM_DICT['gen'], constant.ANSWER_NUM_DICT['kb'], None
loss = 0.0
comparison_tensor = torch.Tensor([1.0]).cuda()
gen_targets = targets[:, :gen_cutoff]
fine_targets = targets[:, gen_cutoff:fine_cutoff]
gen_target_sum = torch.sum(gen_targets, 1)
fine_target_sum = torch.sum(fine_targets, 1)
if torch.sum(gen_target_sum.data) > 0:
gen_mask = torch.squeeze(torch.nonzero(torch.min(gen_target_sum.data, comparison_tensor)), dim=1)
gen_logit_masked = logits[:, :gen_cutoff][gen_mask, :]
gen_target_masked = gen_targets.index_select(0, gen_mask)
gen_loss = self.loss_func(gen_logit_masked, gen_target_masked)
loss += gen_loss
if torch.sum(fine_target_sum.data) > 0:
fine_mask = torch.squeeze(torch.nonzero(torch.min(fine_target_sum.data, comparison_tensor)), dim=1)
fine_logit_masked = logits[:,gen_cutoff:fine_cutoff][fine_mask, :]
fine_target_masked = fine_targets.index_select(0, fine_mask)
fine_loss = self.loss_func(fine_logit_masked, fine_target_masked)
loss += fine_loss
if not data_type == 'kb':
if final_cutoff:
finer_targets = targets[:, fine_cutoff:final_cutoff]
logit_masked = logits[:, fine_cutoff:final_cutoff]
else:
logit_masked = logits[:, fine_cutoff:]
finer_targets = targets[:, fine_cutoff:]
if torch.sum(torch.sum(finer_targets, 1).data) >0:
finer_mask = torch.squeeze(torch.nonzero(torch.min(torch.sum(finer_targets, 1).data, comparison_tensor)), dim=1)
finer_target_masked = finer_targets.index_select(0, finer_mask)
logit_masked = logit_masked[finer_mask, :]
layer_loss = self.loss_func(logit_masked, finer_target_masked)
loss += layer_loss
return loss
def forward(self, feed_dict, data_type):
if self.lstm_type == 'two':
left_outputs = self.rnn(self.input_dropout(feed_dict['left_embed']), self.left_lstm)
right_outputs = self.rnn(self.input_dropout(feed_dict['right_embed']), self.right_lstm)
context_rep = torch.cat((left_outputs, right_outputs), 1)
context_rep, _ = self.attentive_sum(context_rep)
elif self.lstm_type == 'single':
token_mask_embed = self.token_mask(feed_dict['token_bio'].view(-1, 4))
token_mask_embed = token_mask_embed.view(feed_dict['token_embed'].size()[0], -1, 50)
token_embed = torch.cat((feed_dict['token_embed'], token_mask_embed), 2)
token_embed = self.input_dropout(token_embed)
context_rep = self.sorted_rnn(token_embed, feed_dict['token_seq_length'], self.lstm)
context_rep, _ = self.attentive_sum(context_rep)
# Mention Representation
if self.enhanced_mention:
mention_embed, _ = self.head_attentive_sum(feed_dict['mention_embed'])
span_cnn_embed = self.cnn(feed_dict['span_chars'])
mention_embed = torch.cat((span_cnn_embed, mention_embed), 1)
else:
mention_embed = torch.sum(feed_dict['mention_embed'], dim=1)
mention_embed = self.mention_dropout(mention_embed)
output = torch.cat((context_rep, mention_embed), 1)
logits = self.decoder(output, data_type)
loss = self.define_loss(logits, feed_dict['y'], data_type)
return loss, logits