forked from abacaj/code-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_llama.py
69 lines (58 loc) · 1.71 KB
/
eval_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from transformers import (
LlamaTokenizer,
LlamaForCausalLM,
PreTrainedModel,
PreTrainedTokenizer,
)
from core import filter_code, run_eval, fix_indents
import os
import torch
# TODO: move to python-dotenv
# add hugging face access token here
TOKEN = ""
@torch.inference_mode()
def generate_batch_completion(
model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prompt, batch_size
) -> list[str]:
input_batch = [prompt for _ in range(batch_size)]
inputs = tokenizer(input_batch, return_tensors="pt").to(model.device)
input_ids_cutoff = inputs.input_ids.size(dim=1)
generated_ids = model.generate(
**inputs,
use_cache=True,
max_new_tokens=512,
temperature=0.2,
top_p=0.95,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id, # model has no pad token
)
batch_completions = tokenizer.batch_decode(
[ids[input_ids_cutoff:] for ids in generated_ids],
skip_special_tokens=True,
)
return [filter_code(fix_indents(completion)) for completion in batch_completions]
if __name__ == "__main__":
# adjust for n = 10 etc
num_samples_per_task = 10
out_path = "results/llama/eval.jsonl"
os.makedirs("results/llama", exist_ok=True)
tokenizer = LlamaTokenizer.from_pretrained(
"huggyllama/llama-7b",
)
model = torch.compile(
LlamaForCausalLM.from_pretrained(
"huggyllama/llama-7b",
torch_dtype=torch.bfloat16,
)
.eval()
.to("cuda")
)
run_eval(
model,
tokenizer,
num_samples_per_task,
out_path,
generate_batch_completion,
True,
)