-
Notifications
You must be signed in to change notification settings - Fork 367
/
Copy pathdata_utils.py
186 lines (147 loc) · 7.08 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import h5py
import plyfile
import numpy as np
from matplotlib import cm
def save_ply(points, filename, colors=None, normals=None):
vertex = np.core.records.fromarrays(points.transpose(), names='x, y, z', formats='f4, f4, f4')
n = len(vertex)
desc = vertex.dtype.descr
if normals is not None:
vertex_normal = np.core.records.fromarrays(normals.transpose(), names='nx, ny, nz', formats='f4, f4, f4')
assert len(vertex_normal) == n
desc = desc + vertex_normal.dtype.descr
if colors is not None:
vertex_color = np.core.records.fromarrays(colors.transpose() * 255, names='red, green, blue',
formats='u1, u1, u1')
assert len(vertex_color) == n
desc = desc + vertex_color.dtype.descr
vertex_all = np.empty(n, dtype=desc)
for prop in vertex.dtype.names:
vertex_all[prop] = vertex[prop]
if normals is not None:
for prop in vertex_normal.dtype.names:
vertex_all[prop] = vertex_normal[prop]
if colors is not None:
for prop in vertex_color.dtype.names:
vertex_all[prop] = vertex_color[prop]
ply = plyfile.PlyData([plyfile.PlyElement.describe(vertex_all, 'vertex')], text=False)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
ply.write(filename)
def save_ply_property(points, property, property_max, filename, cmap_name='tab20'):
point_num = points.shape[0]
colors = np.full(points.shape, 0.5)
cmap = cm.get_cmap(cmap_name)
for point_idx in range(point_num):
if property[point_idx] == 0:
colors[point_idx] = np.array([0, 0, 0])
else:
colors[point_idx] = cmap(property[point_idx] / property_max)[:3]
save_ply(points, filename, colors)
def save_ply_batch(points_batch, file_path, points_num=None):
batch_size = points_batch.shape[0]
if type(file_path) != list:
basename = os.path.splitext(file_path)[0]
ext = '.ply'
for batch_idx in range(batch_size):
point_num = points_batch.shape[1] if points_num is None else points_num[batch_idx]
if type(file_path) == list:
save_ply(points_batch[batch_idx][:point_num], file_path[batch_idx])
else:
save_ply(points_batch[batch_idx][:point_num], '%s_%04d%s' % (basename, batch_idx, ext))
def save_ply_color_batch(points_batch, colors_batch, file_path, points_num=None):
batch_size = points_batch.shape[0]
if type(file_path) != list:
basename = os.path.splitext(file_path)[0]
ext = '.ply'
for batch_idx in range(batch_size):
point_num = points_batch.shape[1] if points_num is None else points_num[batch_idx]
if type(file_path) == list:
save_ply(points_batch[batch_idx][:point_num], file_path[batch_idx], colors_batch[batch_idx][:point_num])
else:
save_ply(points_batch[batch_idx][:point_num], '%s_%04d%s' % (basename, batch_idx, ext),
colors_batch[batch_idx][:point_num])
def save_ply_property_batch(points_batch, property_batch, file_path, points_num=None, property_max=None,
cmap_name='tab20'):
batch_size = points_batch.shape[0]
if type(file_path) != list:
basename = os.path.splitext(file_path)[0]
ext = '.ply'
property_max = np.max(property_batch) if property_max is None else property_max
for batch_idx in range(batch_size):
point_num = points_batch.shape[1] if points_num is None else points_num[batch_idx]
if type(file_path) == list:
save_ply_property(points_batch[batch_idx][:point_num], property_batch[batch_idx][:point_num],
property_max, file_path[batch_idx], cmap_name)
else:
save_ply_property(points_batch[batch_idx][:point_num], property_batch[batch_idx][:point_num],
property_max, '%s_%04d%s' % (basename, batch_idx, ext), cmap_name)
def save_ply_point_with_normal(data_sample, folder):
for idx, sample in enumerate(data_sample):
filename_pts = os.path.join(folder, '{:08d}.ply'.format(idx))
save_ply(sample[..., :3], filename_pts, normals=sample[..., 3:])
def grouped_shuffle(inputs):
for idx in range(len(inputs) - 1):
assert (len(inputs[idx]) == len(inputs[idx + 1]))
shuffle_indices = np.arange(inputs[0].shape[0])
np.random.shuffle(shuffle_indices)
outputs = []
for idx in range(len(inputs)):
outputs.append(inputs[idx][shuffle_indices, ...])
return outputs
def load_cls(filelist):
points = []
labels = []
folder = os.path.dirname(filelist)
for line in open(filelist):
filename = os.path.basename(line.rstrip())
data = h5py.File(os.path.join(folder, filename))
if 'normal' in data:
points.append(np.concatenate([data['data'][...], data['normal'][...]], axis=-1).astype(np.float32))
else:
points.append(data['data'][...].astype(np.float32))
labels.append(np.squeeze(data['label'][:]).astype(np.int64))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0))
def load_cls_train_val(filelist, filelist_val):
data_train, label_train = grouped_shuffle(load_cls(filelist))
data_val, label_val = load_cls(filelist_val)
return data_train, label_train, data_val, label_val
def is_h5_list(filelist):
return all([line.strip()[-3:] == '.h5' for line in open(filelist)])
def load_seg_list(filelist):
folder = os.path.dirname(filelist)
return [os.path.join(folder, line.strip()) for line in open(filelist)]
def load_seg(filelist):
points = []
labels = []
point_nums = []
labels_seg = []
indices_split_to_full = []
folder = os.path.dirname(filelist)
for line in open(filelist):
data = h5py.File(os.path.join(folder, line.strip()))
points.append(data['data'][...].astype(np.float32))
labels.append(data['label'][...].astype(np.int64))
point_nums.append(data['data_num'][...].astype(np.int32))
labels_seg.append(data['label_seg'][...].astype(np.int64))
if 'indices_split_to_full' in data:
indices_split_to_full.append(data['indices_split_to_full'][...].astype(np.int64))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0),
np.concatenate(point_nums, axis=0),
np.concatenate(labels_seg, axis=0),
np.concatenate(indices_split_to_full, axis=0) if indices_split_to_full else None)
def balance_classes(labels):
_, inverse, counts = np.unique(labels, return_inverse=True, return_counts=True)
counts_max = np.amax(counts)
repeat_num_avg_unique = counts_max / counts
repeat_num_avg = repeat_num_avg_unique[inverse]
repeat_num_floor = np.floor(repeat_num_avg)
repeat_num_probs = repeat_num_avg - repeat_num_floor
repeat_num = repeat_num_floor + (np.random.rand(repeat_num_probs.shape[0]) < repeat_num_probs)
return repeat_num.astype(np.int64)