-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathinfer_ct2.py
52 lines (46 loc) · 2.71 KB
/
infer_ct2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import functools
import os
from faster_whisper import WhisperModel
from utils.utils import print_arguments, add_arguments
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("audio_path", type=str, default="dataset/test.wav", help="预测的音频路径")
add_arg("model_path", type=str, default="models/whisper-tiny-finetune-ct2", help="转换后的模型路径,转换方式看文档")
add_arg("language", type=str, default="zh", help="设置语言,必须简写,如果为None则自动检测语言")
add_arg("task", type=str, default="transcribe", choices=['transcribe', 'translate'], help="模型的任务")
add_arg("use_gpu", type=bool, default=True, help="是否使用gpu进行预测")
add_arg("use_int8", type=bool, default=False, help="是否使用int8进行预测")
add_arg("beam_size", type=int, default=10, help="解码搜索大小")
add_arg("num_workers", type=int, default=1, help="预测器的并发数量")
add_arg("vad_filter", type=bool, default=False, help="是否使用VAD过滤掉部分没有讲话的音频")
add_arg("local_files_only", type=bool, default=True, help="是否只在本地加载模型,不尝试下载")
args = parser.parse_args()
print_arguments(args)
# 检查模型文件是否存在
assert os.path.exists(args.model_path), f"模型文件{args.model_path}不存在"
# 加载模型
if args.use_gpu:
if not args.use_int8:
model = WhisperModel(args.model_path, device="cuda", compute_type="float16", num_workers=args.num_workers,
local_files_only=args.local_files_only)
else:
model = WhisperModel(args.model_path, device="cuda", compute_type="int8_float16", num_workers=args.num_workers,
local_files_only=args.local_files_only)
else:
model = WhisperModel(args.model_path, device="cpu", compute_type="int8", num_workers=args.num_workers,
local_files_only=args.local_files_only)
# 支持large-v3模型
if 'large-v3' in args.model_path:
model.feature_extractor.mel_filters = \
model.feature_extractor.get_mel_filters(model.feature_extractor.sampling_rate,
model.feature_extractor.n_fft, n_mels=128)
# 预热
_, _ = model.transcribe("dataset/test.wav", beam_size=5)
# 语音识别
segments, info = model.transcribe(args.audio_path, beam_size=args.beam_size, language=args.language, task=args.task,
vad_filter=args.vad_filter)
for segment in segments:
text = segment.text
print(f"[{round(segment.start, 2)} - {round(segment.end, 2)}]:{text}\n")