-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
executable file
·224 lines (187 loc) · 9.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import sys
sys.path.append('./apex')
"""
The system trains BERT on the SNLI + MultiNLI (AllNLI) dataset with softmax loss function.
At every 1000 training steps, the model is evaluated on the dev set.
"""
import logging
from datetime import datetime
import torch.nn as nn
import torch
from tqdm import tqdm
import numpy as np
from transformers import *
import math
import argparse
import random
import copy
import os
from nltk.tokenize import word_tokenize
from utils.nli_data_reader import NLIDataReader
from utils.logging_handler import LoggingHandler
from bert_nli import BertNLIModel
from test_trained_model import evaluate
def get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int):
"""
Returns the correct learning rate scheduler
"""
scheduler = scheduler.lower()
if scheduler=='constantlr':
return get_constant_schedule(optimizer)
elif scheduler=='warmupconstant':
return get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps)
elif scheduler=='warmuplinear':
return get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
elif scheduler=='warmupcosine':
return get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
elif scheduler=='warmupcosinewithhardrestarts':
return get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
else:
raise ValueError("Unknown scheduler {}".format(scheduler))
def train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, checkpoint, gpu, max_grad_norm, best_acc):
loss_fn = nn.CrossEntropyLoss()
step_cnt = 0
best_model_weights = None
for pointer in tqdm(range(0, len(train_data), batch_size),desc='training'):
model.train() # model was in eval mode in evaluate(); re-activate the train mode
optimizer.zero_grad() # clear gradients first
torch.cuda.empty_cache() # releases all unoccupied cached memory
step_cnt += 1
sent_pairs = []
labels = []
for i in range(pointer, pointer+batch_size):
if i >= len(train_data): break
sents = train_data[i].get_texts()
if len(word_tokenize(' '.join(sents))) > 300: continue
sent_pairs.append(sents)
labels.append(train_data[i].get_label())
logits, _ = model.ff(sent_pairs,checkpoint)
if logits is None: continue
true_labels = torch.LongTensor(labels)
if gpu:
true_labels = true_labels.to('cuda')
loss = loss_fn(logits, true_labels)
# back propagate
if fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
# update weights
optimizer.step()
# update training rate
scheduler.step()
if step_cnt%2000 == 0:
acc = evaluate(model,dev_data,checkpoint,mute=True)
logging.info('==> step {} dev acc: {}'.format(step_cnt,acc))
if acc > best_acc:
best_acc = acc
best_model_weights = copy.deepcopy(model.cpu().state_dict())
model.to('cuda')
return best_model_weights
def parse_args():
ap = argparse.ArgumentParser("arguments for bert-nli training")
ap.add_argument('-b','--batch_size',type=int,default=8,help='batch size')
ap.add_argument('-ep','--epoch_num',type=int,default=1,help='epoch num')
ap.add_argument('--fp16',type=int,default=0,help='use apex mixed precision training (1) or not (0); do not use this together with checkpoint')
ap.add_argument('--check_point','-cp',type=int,default=0,help='use checkpoint (1) or not (0); this is required for training bert-large or larger models; do not use this together with apex fp16')
ap.add_argument('--gpu',type=int,default=1,help='use gpu (1) or not (0)')
ap.add_argument('-ss','--scheduler_setting',type=str,default='WarmupLinear',choices=['WarmupLinear','ConstantLR','WarmupConstant','WarmupCosine','WarmupCosineWithHardRestarts'])
ap.add_argument('-tm','--trained_model',type=str,default='None',help='path to the trained model; make sure the trained model is consistent with the model you want to train')
ap.add_argument('-mg','--max_grad_norm',type=float,default=1.,help='maximum gradient norm')
ap.add_argument('-wp','--warmup_percent',type=float,default=0.2,help='how many percentage of steps are used for warmup')
ap.add_argument('-bt','--bert_type',type=str,default='bert-base',help='transformer (bert) pre-trained model you want to use', choices=['bert-base','bert-large','albert-base-v2','albert-large-v2'])
ap.add_argument('--hans',type=int,default=0,help='use hans data (1) or not (0)')
ap.add_argument('-rl','--reinit_layers',type=int,default=0,help='reinitialise the last N layers')
ap.add_argument('-fl','--freeze_layers',type=int,default=0,help='whether to freeze all but the lasat few layers (1) or not (0)')
args = ap.parse_args()
return args.batch_size, args.epoch_num, args.fp16, args.check_point, args.gpu, args.scheduler_setting, args.max_grad_norm, args.warmup_percent, args.bert_type, args.trained_model, args.hans, args.reinit_layers, args.freeze_layers
if __name__ == '__main__':
batch_size, epoch_num, fp16, checkpoint, gpu, scheduler_setting, max_grad_norm, warmup_percent, bert_type, trained_model, hans, reinit_layers, freeze_layers = parse_args()
fp16 = bool(fp16)
gpu = bool(gpu)
hans = bool(hans)
checkpoint = bool(checkpoint)
if trained_model=='None': trained_model=None
print('=====Arguments=====')
print('bert type:\t{}'.format(bert_type))
print('trained model path:\t{}'.format(trained_model))
print('batch size:\t{}'.format(batch_size))
print('epoch num:\t{}'.format(epoch_num))
print('fp16:\t{}'.format(fp16))
print('check_point:\t{}'.format(checkpoint))
print('gpu:\t{}'.format(gpu))
print('scheduler setting:\t{}'.format(scheduler_setting))
print('max grad norm:\t{}'.format(max_grad_norm))
print('warmup percent:\t{}'.format(warmup_percent))
print('using hans:\t{}'.format(hans))
print('=====Arguments=====')
label_num = 3
if hans:
model_save_path = 'output/nli_hans_{}-{}'.format(bert_type,datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
else:
model_save_path = 'output/nli_{}-{}'.format(bert_type,datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
print('model save path', model_save_path)
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
# Read the dataset
if hans:
nli_reader = NLIDataReader('datasets/Hans')
hans_data = nli_reader.get_hans_examples('heuristics_train_set.txt')
else:
hans_data = []
nli_reader = NLIDataReader('datasets/AllNLI')
train_num_labels = nli_reader.get_num_labels()
msnli_data = nli_reader.get_examples('train.gz') #,max_examples=5000)
all_data = msnli_data + hans_data
random.shuffle(all_data)
train_num = int(len(all_data)*0.95)
train_data = all_data[:train_num]
dev_data = all_data[train_num:]
logging.info('train data size {}'.format(len(train_data)))
logging.info('dev data size {}'.format(len(dev_data)))
total_steps = math.ceil(epoch_num*len(train_data)*1./batch_size)
warmup_steps = int(total_steps*warmup_percent)
model = BertNLIModel(gpu=gpu,batch_size=batch_size,bert_type=bert_type,model_path=trained_model, reinit_num=reinit_layers, freeze_layers=freeze_layers)
optimizer = AdamW(model.parameters(),lr=2e-5,eps=1e-6,correct_bias=False)
scheduler = get_scheduler(optimizer, scheduler_setting, warmup_steps=warmup_steps, t_total=total_steps)
if fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
best_acc = -1.
best_model_dic = None
for ep in range(epoch_num):
logging.info('\n=====epoch {}/{}====='.format(ep,epoch_num))
model_dic = train(model, optimizer, scheduler, train_data, dev_data, batch_size, fp16, checkpoint, gpu, max_grad_norm, best_acc)
if model_dic is not None:
best_model_dic = model_dic
assert best_model_dic is not None
# for testing load the best model
model.load_model(best_model_dic)
logging.info('\n=====Training finished. Now start test=====')
if hans:
nli_reader = NLIDataReader('datasets/Hans')
hans_test_data = nli_reader.get_hans_examples('heuristics_evaluation_set.txt')
else:
hans_test_data = []
nli_reader = NLIDataReader('datasets/AllNLI')
msnli_test_data = nli_reader.get_examples('dev.gz') #,max_examples=50)
test_data = msnli_test_data + hans_test_data
logging.info('test data size: {}'.format(len(test_data)))
test_acc = evaluate(model,test_data,batch_size)
logging.info('accuracy on test set: {}'.format(test_acc))
if model_save_path is not None:
os.makedirs(model_save_path, exist_ok=True)
if os.listdir(model_save_path):
raise ValueError("Output directory ({}) already exists and is not empty.".format(
model_save_path))
model.save(model_save_path,best_model_dic,test_acc)