forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCIntegerDivider.cuh
120 lines (103 loc) · 3.89 KB
/
THCIntegerDivider.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#ifndef THC_INTEGER_DIVIDER_INC
#define THC_INTEGER_DIVIDER_INC
#include <assert.h>
// A utility class to implement integer division by muliplication, given a fixed
// divisor.
//
// WARNING: The fast divider algorithm is only implemented for unsigned int;
// otherwise we default to plain integer division. For unsigned int,
// we further assume that the dividend is at most INT32_MAX. Thus,
// IntDivider must NOT be used for general integer division.
//
// This reduced range is enough for our purpose, and it allows us to
// slightly simplify the computation.
//
// (NOTE: Below, "2^k" denotes exponentiation, i.e., 1<<k.)
//
// For any N-bit unsigned integer d (> 0), we can find a "magic number" m (2^N
// <= m < 2^(N+1)) and shift s such that:
//
// \floor(n / d) = \floor((m * n) / 2^(N+s)).
//
// Given such m and s, the integer division can be then implemented as:
//
// let m' = m - 2^N // 0 <= m' < 2^N
//
// fast_integer_division(n):
// // Multiply two N-bit unsigned integers: the result is a 2N-bit unsigned
// // integer. Then take the higher N bits.
// t = (m' * n) >> N
//
// // Here we use the fact that n is less than 2^(N-1): otherwise the value
// // of (t + n) may not fit in an N-bit integer.
// return (t + n) >> s
//
// Finding such a magic number is surprisingly easy:
//
// s = \ceil(\log_2 d)
// m' = \floor(2^N * (2^s - d) / d) + 1 // Need 2N-bit integer arithmetic.
//
// See also:
// - Division by Invariant Integers Using Multiplication,
// Torbjörn Granlund and Peter L. Montgomery, 1994.
//
// - http://www.hackersdelight.org/magic.htm
//
// - http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
// Result of div/mod operation stored together.
template <typename Value>
struct DivMod {
Value div, mod;
__host__ __device__ DivMod(Value div, Value mod) : div(div), mod(mod) { }
};
// Base case: we only have an implementation for uint32_t for now. For
// everything else, we use plain division.
template <typename Value>
struct IntDivider {
IntDivider() { } // Dummy constructor for arrays.
IntDivider(Value d) : divisor(d) { }
__host__ __device__ inline Value div(Value n) const { return n / divisor; }
__host__ __device__ inline Value mod(Value n) const { return n % divisor; }
__host__ __device__ inline DivMod<Value> divmod(Value n) const {
return DivMod<Value>(n / divisor, n % divisor);
}
Value divisor;
};
// Implement fast integer division.
template <>
struct IntDivider<unsigned int> {
static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int.");
IntDivider() { } // Dummy constructor for arrays.
IntDivider(unsigned int d) : divisor(d) {
assert(divisor >= 1 && divisor <= INT32_MAX);
// TODO: gcc/clang has __builtin_clz() but it's not portable.
for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break;
uint64_t one = 1;
uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
m1 = magic;
assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits.
}
__host__ __device__ inline unsigned int div(unsigned int n) const {
#ifdef __CUDA_ARCH__
// 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and
// 'm1'.
unsigned int t = __umulhi(n, m1);
return (t + n) >> shift;
#else
// Using uint64_t so that the addition does not overflow.
uint64_t t = ((uint64_t) n * m1) >> 32;
return (t + n) >> shift;
#endif
}
__host__ __device__ inline unsigned int mod(unsigned int n) const {
return n - div(n) * divisor;
}
__host__ __device__ inline DivMod<unsigned int> divmod(unsigned int n) const {
unsigned int q = div(n);
return DivMod<unsigned int>(q, n - q * divisor);
}
unsigned int divisor; // d above.
unsigned int m1; // Magic number: m' above.
unsigned int shift; // Shift amounts.
};
#endif // THC_INTEGER_DIVIDER_INC