-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscript.py
154 lines (131 loc) · 6.43 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os, sys
from pathlib import Path
import cv2
from collections import Counter
import numpy as np
from PIL import Image
from ultralytics import YOLO
from ultralytics.solutions import object_counter
from ultralytics.utils.plotting import Annotator, colors
def open_directory(path):
if sys.platform.startswith('darwin'): # macOS
os.system('open "{}"'.format(path))
elif sys.platform.startswith('win'): # Windows
os.system('start "" "{}"'.format(path))
elif sys.platform.startswith('linux'): # Linux
os.system('xdg-open "{}"'.format(path))
else:
print("Unsupported operating system.")
class YOLOWrapper:
def __init__(self):
self.__model = ''
self.__model_seg = ''
self.download_model()
def download_model(self):
# Object detection model
self.__model = YOLO('yolov8n.pt')
# Semantic segmentation model
self.__model_seg = YOLO('yolov8n-seg.pt')
# 0 is object detection, 1 is semantic segmentation
self.__model_dict = {
0: self.__model,
1: self.__model_seg,
2: self.__model_seg
}
def get_result(self, cur_task, src_filename, plot_arg):
cur_model = self.__model_dict[cur_task]
if isinstance(cur_model, YOLO):
try:
result_dict = {}
ext = Path(src_filename).suffix
dst_filename = f'{Path(src_filename).stem}_result{ext}'
if ext in ['.jpg', '.png', '.jpeg']:
results = cur_model(src_filename)
# Save result image
for r in results:
boxes = plot_arg['boxes']
labels = plot_arg['labels']
conf = plot_arg['conf']
arr = [int(cls.item()) for cls in r.boxes.cls]
arr = Counter(arr)
for k, v in arr.items():
result_dict[r.names[int(k)]] = v
im_array = r.plot(boxes=boxes, labels=labels, conf=conf)
im = Image.fromarray(im_array[..., ::-1])
im.save(dst_filename)
elif ext in ['.mp4']:
# Get original video metadata
vcap = cv2.VideoCapture(src_filename) # Assuming all frames have the same size
fps = vcap.get(cv2.CAP_PROP_FPS)
width = int(vcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
size = (width, height)
# Save result video
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video = cv2.VideoWriter(dst_filename, fourcc, fps, size)
if cur_task == 2:
# results = cur_model.track(src_filename, stream=True)
result_dict = {}
while True:
ret, im0 = vcap.read()
if not ret:
print("Video frame is empty or video processing has been successfully completed.")
break
annotator = Annotator(im0, line_width=2)
results = cur_model.track(im0, persist=True)
r = results[0]
if r.boxes.id is not None and r.masks is not None:
masks = r.masks.xy
track_ids = r.boxes.id.int().cpu().tolist()
boxes = r.boxes
# Object counter
for b in boxes:
obj_name = r.names[int(b.cls)]
obj_id = int(b.id.item())
print(f'Class name: {r.names[int(b.cls)]}, ID: {int(b.id.item())}')
if obj_name not in result_dict:
result_dict[obj_name] = [obj_id]
else:
# If it has a different ID, add it.
if result_dict[obj_name].__contains__(obj_id):
pass
else:
# add ID.
result_dict[obj_name].append(obj_id)
# Draw masks
for mask, track_id in zip(masks, track_ids):
annotator.seg_bbox(mask=mask,
mask_color=colors(track_id, True),
track_label=str(track_id))
video.write(im0)
# cv2.imshow("instance-segmentation-object-tracking", im0)
#
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
video.release()
vcap.release()
cv2.destroyAllWindows()
# Count the number of objects
for k, v in result_dict.items():
result_dict[k] = len(v)
else:
results = cur_model.track(src_filename, stream=True)
for r in results:
boxes = plot_arg['boxes']
labels = plot_arg['labels']
conf = plot_arg['conf']
frame_ = r.plot(boxes=boxes, labels=labels, conf=conf)
frame_ = Image.fromarray(frame_[..., ::-1])
frame_ = np.array(frame_)
frame_ = frame_[:, :, ::-1]
video.write(frame_)
return dst_filename, result_dict
except Exception as e:
raise Exception(e)
else:
raise Exception('You have to call download_model first.')
# for CLI test
# w = YOLOWrapper()
# w.download_model()
# w.get_result(0, 'sample/a.jpg', {'boxes': True, 'labels': True, 'conf': True})
# w.get_result(1, 'sample/b.png', {'boxes': True, 'labels': True, 'conf': True})