-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathmodel_025_deconv_norm_validate.py
executable file
·408 lines (358 loc) · 22.4 KB
/
model_025_deconv_norm_validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python
import sys
import numpy as np
import tensorflow as tf
from input_velodyne import *
import glob
#original
def batch_norm(inputs, phase_train, decay=0.9, eps=1e-5):
"""Batch Normalization
Args:
inputs: input data(Batch size) from last layer
phase_train: when you test, please set phase_train "None"
Returns:
output for next layer
"""
gamma = tf.get_variable("gamma", shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(1.0))
beta = tf.get_variable("beta", shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
pop_mean = tf.get_variable("pop_mean", trainable=False, shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
pop_var = tf.get_variable("pop_var", trainable=False, shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(1.0))
# gamma = tf.Variable(tf.ones(inputs.get_shape()[1:]), name="gamma")
# beta = tf.Variable(tf.zeros(inputs.get_shape()[1:]), name="beta")
# pop_mean = tf.Variable(tf.zeros(inputs.get_shape()[1:]), trainable=False, name="pop_mean")
# pop_var = tf.Variable(tf.ones(inputs.get_shape()[1:]), trainable=False, name="pop_var")
axes = range(len(inputs.get_shape()) - 1)
if phase_train != None:
batch_mean, batch_var = tf.nn.moments(inputs, axes)
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean*(1 - decay))
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay))
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, gamma, eps)
else:
return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, gamma, eps)
# def batch_norm(inputs, phase_train, decay=0.9, eps=1e-5):
# with tf.variable_scope("bn"):
# gamma = tf.get_variable("gamma", shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(1.0))
# beta = tf.get_variable("beta", shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
# pop_mean = tf.get_variable("pop_mean", trainable=True, shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
# pop_var = tf.get_variable("pop_var", trainable=True, shape=inputs.get_shape()[-1], dtype=tf.float32, initializer=tf.constant_initializer(1.0))
#
# # if phase_train == None:
# # print 21
# # return tf.nn.batch_normalization(inputs, pop_mean, pop_var, beta, gamma, eps)
#
# rank = len(inputs.get_shape())
# axes = range(rank - 1)
# batch_mean, batch_var = tf.nn.moments(inputs, axes)
# ema = tf.train.ExponentialMovingAverage(decay=decay)
#
# def update():
# ema_apply_op = ema.apply([batch_mean, batch_var])
# train_mean = pop_mean.assign(ema.average(batch_mean))
# train_var = pop_var.assign(ema.average(batch_var))
# with tf.control_dependencies([ema_apply_op]):
# return tf.nn.batch_normalization(inputs, tf.identity(batch_mean), tf.identity(batch_var), \
# beta, gamma, eps)
#
# def average():
# train_mean = pop_mean.assign(ema.average(batch_mean))
# train_var = pop_var.assign(ema.average(batch_var))
# with tf.control_dependencies([train_mean, train_var]):
# return tf.nn.batch_normalization(inputs, train_mean, train_var, beta, gamma, eps)
#
# return tf.cond(phase_train, update, average)
# def batch_norm(inputs, phase_train, decay=0.9, eps=1e-5):
# """Batch Normalization
#
# Args:
# inputs: input data(Batch size) from last layer
# phase_train: when you test, please set phase_train "None"
# Returns:
# output for next layer
# """
# bn = tf.contrib.layers.batch_norm(inputs, center=True, scale=True, is_training=False, scope="bn")
# return bn
# with tf.variable_scope("bn", reuse=False):
# bn = tf.contrib.layers.batch_norm(inputs, center=True, scale=True, is_training=False, reuse=False, scope="bn")
# return bn
def conv3DLayer(input_layer, input_dim, output_dim, height, width, length, stride, activation=tf.nn.relu, padding="SAME", name="", is_training=True):
with tf.variable_scope("conv3D" + name):
kernel = tf.get_variable("weights", shape=[length, height, width, input_dim, output_dim], \
dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.01))
b = tf.get_variable("bias", shape=[output_dim], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv3d(input_layer, kernel, stride, padding=padding)
bias = tf.nn.bias_add(conv, b)
if activation:
bias = activation(bias, name="activation")
bias = batch_norm(bias, is_training)
return bias
def conv3D_to_output(input_layer, input_dim, output_dim, height, width, length, stride, activation=tf.nn.relu, padding="SAME", name=""):
with tf.variable_scope("conv3D" + name):
kernel = tf.get_variable("weights", shape=[length, height, width, input_dim, output_dim], \
dtype=tf.float32, initializer=tf.constant_initializer(0.01))
conv = tf.nn.conv3d(input_layer, kernel, stride, padding=padding)
return conv
def deconv3D_to_output(input_layer, input_dim, output_dim, height, width, length, stride, output_shape, activation=tf.nn.relu, padding="SAME", name=""):
with tf.variable_scope("deconv3D"+name):
kernel = tf.get_variable("weights", shape=[length, height, width, output_dim, input_dim], \
dtype=tf.float32, initializer=tf.constant_initializer(0.01))
deconv = tf.nn.conv3d_transpose(input_layer, kernel, output_shape, stride, padding="SAME")
return deconv
def fully_connected(input_layer, shape, name="", is_training=True):
with tf.variable_scope("fully" + name):
kernel = tf.get_variable("weights", shape=shape, \
dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.01))
fully = tf.matmul(input_layer, kernel)
fully = tf.nn.relu(fully)
fully = batch_norm(fully, is_training)
return fully
class BNBLayer(object):
def __init__(self):
pass
def build_graph(self, voxel, activation=tf.nn.relu, is_training=None):
self.layer1 = conv3DLayer(voxel, 1, 10, 5, 5, 5, [1, 2, 2, 2, 1], name="layer1", activation=activation, is_training=is_training)
self.layer2 = conv3DLayer(self.layer1, 10, 15, 5, 5, 5, [1, 2, 2, 2, 1], name="layer2", activation=activation, is_training=is_training)
# self.layer3 = conv3DLayer(self.layer2, 15, 30, 3, 3, 3, [1, 1, 1, 1, 1], name="layer3", activation=activation, is_training=is_training)
# self.layer4 = conv3DLayer(self.layer3, 32, 32, 3, 3, 3, [1, 1, 1, 1, 1], name="layer4", activation=activation, is_training=is_training)
# self.layer4 = conv3DLayer(self.layer3, 32, 32, 3, 3, 3, [1, 2, 2, 2, 1], name="layer4", activation=activation, is_training=is_training)
# base_shape = self.layer3.get_shape().as_list()
# obj_output_shape = [tf.shape(self.layer4)[0], base_shape[1], base_shape[2], base_shape[3], 2]
# cord_output_shape = [tf.shape(self.layer4)[0], base_shape[1], base_shape[2], base_shape[3], 24]
self.objectness = conv3D_to_output(self.layer2, 15, 2, 3, 3, 3, [1, 1, 1, 1, 1], name="objectness", activation=None)
self.cordinate = conv3D_to_output(self.layer2, 15, 24, 3, 3, 3, [1, 1, 1, 1, 1], name="cordinate", activation=None)
# self.objectness = deconv3D_to_output(self.layer4, 32, 2, 3, 3, 3, [1, 2, 2, 2, 1], obj_output_shape, name="objectness", activation=None)
# self.cordinate = deconv3D_to_output(self.layer4, 32, 24, 3, 3, 3, [1, 2, 2, 2, 1], cord_output_shape, name="cordinate", activation=None)
self.y = tf.nn.softmax(self.objectness, dim=-1)
#original
# def build_graph(self, voxel, activation=tf.nn.relu, is_training=True):
# self.layer1 = conv3DLayer(voxel, 1, 10, 5, 5, 5, [1, 2, 2, 2, 1], name="layer1", activation=activation, is_training=is_training)
# self.layer2 = conv3DLayer(self.layer1, 10, 16, 5, 5, 5, [1, 2, 2, 2, 1], name="layer2", activation=activation, is_training=is_training)
# self.layer3 = conv3DLayer(self.layer2, 16, 30, 3, 3, 3, [1, 2, 2, 2, 1], name="layer3", activation=activation, is_training=is_training)
# base_shape = self.layer2.get_shape().as_list()
# obj_output_shape = [tf.shape(self.layer3)[0], base_shape[1], base_shape[2], base_shape[3], 2]
# cord_output_shape = [tf.shape(self.layer3)[0], base_shape[1], base_shape[2], base_shape[3], 24]
# self.objectness = deconv3D_to_output(self.layer3, 30, 2, 3, 3, 3, [1, 2, 2, 2, 1], obj_output_shape, name="objectness", activation=None)
# self.cordinate = deconv3D_to_output(self.layer3, 30, 24, 3, 3, 3, [1, 2, 2, 2, 1], cord_output_shape, name="cordinate", activation=None)
# self.y = tf.nn.softmax(self.objectness, dim=-1)
def ssd_model(sess, voxel_shape=(300, 300, 300),activation=tf.nn.relu, is_training=True):
voxel = tf.placeholder(tf.float32, [None, voxel_shape[0], voxel_shape[1], voxel_shape[2], 1])
phase_train = tf.placeholder(tf.bool, name='phase_train') if is_training else None
with tf.variable_scope("3D_CNN_model") as scope:
bnb_model = BNBLayer()
bnb_model.build_graph(voxel, activation=activation, is_training=phase_train)
if is_training:
initialized_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="3D_CNN_model")
sess.run(tf.variables_initializer(initialized_var))
return bnb_model, voxel, phase_train
def loss_func(model):
g_map = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list()[:4])
g_cord = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list())
object_loss = tf.multiply(g_map, model.objectness[:, :, :, :, 0])
non_gmap = tf.subtract(tf.ones_like(g_map, dtype=tf.float32), g_map)
nonobject_loss = tf.multiply(non_gmap, model.objectness[:, :, :, :, 1])
# sum_object_loss = tf.add(tf.exp(object_loss), tf.exp(nonobject_loss))
sum_object_loss = tf.exp(-tf.add(object_loss, nonobject_loss))
# sum_object_loss = tf.exp(-nonobject_loss)
bunbo = tf.add(tf.exp(-model.objectness[:, :, :, :, 0]), tf.exp(-model.objectness[:, :, :, :, 1]))
obj_loss = 0.005 * tf.reduce_sum(-tf.log(tf.div(sum_object_loss, bunbo)))
cord_diff = tf.multiply(g_map, tf.reduce_sum(tf.square(tf.subtract(model.cordinate, g_cord)), 4))
cord_loss = tf.reduce_sum(cord_diff)
return obj_loss, obj_loss, cord_loss, g_map, g_cord
def loss_func2(model):
g_map = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list()[:4])
obj_loss = tf.reduce_sum(tf.square(tf.subtract(model.objectness[:, :, :, :, 0], g_map)))
g_cord = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list())
cord_diff = tf.multiply(g_map, tf.reduce_sum(tf.square(tf.subtract(model.cordinate, g_cord)), 4))
cord_loss = tf.reduce_sum(cord_diff) * 0.1
return tf.add(obj_loss, cord_loss), g_map, g_cord
def loss_func3(model):
g_map = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list()[:4])
g_cord = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list())
non_gmap = tf.subtract(tf.ones_like(g_map, dtype=tf.float32), g_map)
elosion = 0.00001
y = model.y
is_obj_loss = -tf.reduce_sum(tf.multiply(g_map, tf.log(y[:, :, :, :, 0] + elosion)))
non_obj_loss = tf.multiply(-tf.reduce_sum(tf.multiply(non_gmap, tf.log(y[:, :, :, :, 1] + elosion))), 0.0008)
cross_entropy = tf.add(is_obj_loss, non_obj_loss)
obj_loss = cross_entropy
g_cord = tf.placeholder(tf.float32, model.cordinate.get_shape().as_list())
cord_diff = tf.multiply(g_map, tf.reduce_sum(tf.square(tf.subtract(model.cordinate, g_cord)), 4))
cord_loss = tf.multiply(tf.reduce_sum(cord_diff), 0.02)
return tf.add(obj_loss, cord_loss), obj_loss, cord_loss, is_obj_loss, non_obj_loss, g_map, g_cord, y
def create_optimizer(all_loss, lr=0.001):
opt = tf.train.AdamOptimizer(lr)
optimizer = opt.minimize(all_loss)
return optimizer
def train(batch_num, velodyne_path, label_path=None, calib_path=None, resolution=0.2, dataformat="pcd", label_type="txt", is_velo_cam=False, \
scale=4, voxel_shape=(800, 800, 40), x=(0, 80), y=(-40, 40), z=(-2.5, 1.5)):
# tf Graph input
batch_size = batch_num
training_epochs = 101
with tf.Session() as sess:
model, voxel, phase_train = ssd_model(sess, voxel_shape=voxel_shape, activation=tf.nn.relu, is_training=True)
saver = tf.train.Saver()
total_loss, obj_loss, cord_loss, is_obj_loss, non_obj_loss, g_map, g_cord, y_pred = loss_func3(model)
optimizer = create_optimizer(total_loss, lr=0.01)
init = tf.global_variables_initializer()
sess.run(init)
for epoch in range(training_epochs):
for (batch_x, batch_g_map, batch_g_cord) in lidar_generator(batch_num, velodyne_path, label_path=label_path, \
calib_path=calib_path,resolution=resolution, dataformat=dataformat, label_type=label_type, is_velo_cam=is_velo_cam, \
scale=scale, x=x, y=y, z=z):
# print batch_x.shape, batch_g_map.shape, batch_g_cord.shape, batch_num
# print batch_x.shape
# print batch_g_map.shape
# print batch_g_cord.shape
sess.run(optimizer, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
# ct = sess.run(total_loss, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
# co = sess.run(obj_loss, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
cc = sess.run(cord_loss, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
iol = sess.run(is_obj_loss, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
nol = sess.run(non_obj_loss, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord, phase_train:True})
# soft = sess.run(y, feed_dict={voxel: batch_x, g_map: batch_g_map, g_cord: batch_g_cord})
# print soft[0, 0, 0, 0, :]
# print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(ct))
# print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(co))
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cc))
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(iol))
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(nol))
if (epoch != 0) and (epoch % 10 == 0):
print "Save epoch " + str(epoch)
saver.save(sess, "velodyne_025_deconv_norm_valid" + str(epoch) + ".ckpt")
print("Optimization Finished!")
def test(batch_num, velodyne_path, label_path=None, calib_path=None, resolution=0.2, dataformat="pcd", label_type="txt", is_velo_cam=False, \
scale=4, voxel_shape=(800, 800, 40), x=(0, 80), y=(-40, 40), z=(-2.5, 1.5)):
# tf Graph input
batch_size = batch_num # 1
training_epochs = 5
p = []
pc = None
bounding_boxes = None
places = None
rotates = None
size = None
proj_velo = None
if dataformat == "bin":
pc = load_pc_from_bin(velodyne_path)
elif dataformat == "pcd":
pc = load_pc_from_pcd(velodyne_path)
if calib_path:
calib = read_calib_file(calib_path)
proj_velo = proj_to_velo(calib)[:, :3]
if label_path:
places, rotates, size = read_labels(label_path, label_type, calib_path=calib_path, is_velo_cam=is_velo_cam, proj_velo=proj_velo)
corners = get_boxcorners(places, rotates, size)
filter_car_data(corners)
pc = filter_camera_angle(pc)
voxel = raw_to_voxel(pc, resolution=resolution, x=x, y=y, z=z)
center_sphere = center_to_sphere(places, size, resolution=resolution)
corner_label = corner_to_train(corners, center_sphere, resolution=resolution)
g_map = create_objectness_label(center_sphere, resolution=resolution)
g_cord = corner_label.reshape(corner_label.shape[0], -1)
voxel_x = voxel.reshape(1, voxel.shape[0], voxel.shape[1], voxel.shape[2], 1)
with tf.Session() as sess:
is_training=None
model, voxel, phase_train = ssd_model(sess, voxel_shape=voxel_shape, activation=tf.nn.relu, is_training=is_training)
saver = tf.train.Saver()
new_saver = tf.train.import_meta_graph("velodyne_025_deconv_norm_valid0.ckpt.meta")
last_model = "./velodyne_025_deconv_norm_valid0.ckpt"
saver.restore(sess, last_model)
objectness = model.objectness
cordinate = model.cordinate
y_pred = model.y
objectness = sess.run(objectness, feed_dict={voxel: voxel_x})[0, :, :, :, 0]
cordinate = sess.run(cordinate, feed_dict={voxel: voxel_x})[0]
y_pred = sess.run(y_pred, feed_dict={voxel: voxel_x})[0, :, :, :, 0]
print objectness.shape, objectness.max(), objectness.min()
print y_pred.shape, y_pred.max(), y_pred.min()
# print np.where(objectness >= 0.55)
index = np.where(y_pred >= 0.995)
print np.vstack((index[0], np.vstack((index[1], index[2])))).transpose()
print np.vstack((index[0], np.vstack((index[1], index[2])))).transpose().shape
a = center_to_sphere(places, size, resolution=resolution, x=x, y=y, z=z, \
scale=scale, min_value=np.array([x[0], y[0], z[0]]))
label_center = sphere_to_center(a, resolution=resolution, \
scale=scale, min_value=np.array([x[0], y[0], z[0]]))
label_corners = get_boxcorners(label_center, rotates, size)
print a[a[:, 0].argsort()]
# center = np.array([20, 57, 3])
#
# pred_center = sphere_to_center(center, resolution=resolution)
# print pred_center
# print cordinate.shape
# corners = cordinate[center[0], center[1], center[2]].reshape(-1, 3)
centers = np.vstack((index[0], np.vstack((index[1], index[2])))).transpose()
centers = sphere_to_center(centers, resolution=resolution, \
scale=scale, min_value=np.array([x[0], y[0], z[0]]))
corners = cordinate[index].reshape(-1, 8, 3) + centers[:, np.newaxis]
print corners.shape
print voxel.shape
# publish_pc2(pc, corners.reshape(-1, 3))
publish_pc2(pc, label_corners.reshape(-1, 3))
# pred_corners = corners + pred_center
# print pred_corners
def lidar_generator(batch_num, velodyne_path, label_path=None, calib_path=None, resolution=0.2, dataformat="pcd", label_type="txt", is_velo_cam=False, \
scale=4, x=(0, 80), y=(-40, 40), z=(-2.5, 1.5)):
velodynes_path = glob.glob(velodyne_path)
labels_path = glob.glob(label_path)
calibs_path = glob.glob(calib_path)
velodynes_path.sort()
labels_path.sort()
calibs_path.sort()
iter_num = len(velodynes_path) // batch_num
for itn in range(iter_num):
batch_voxel = []
batch_g_map = []
batch_g_cord = []
for velodynes, labels, calibs in zip(velodynes_path[itn*batch_num:(itn+1)*batch_num], \
labels_path[itn*batch_num:(itn+1)*batch_num], calibs_path[itn*batch_num:(itn+1)*batch_num]):
p = []
pc = None
bounding_boxes = None
places = None
rotates = None
size = None
proj_velo = None
if dataformat == "bin":
pc = load_pc_from_bin(velodynes)
elif dataformat == "pcd":
pc = load_pc_from_pcd(velodynes)
if calib_path:
calib = read_calib_file(calibs)
proj_velo = proj_to_velo(calib)[:, :3]
if label_path:
places, rotates, size = read_labels(labels, label_type, calib_path=calib_path, is_velo_cam=is_velo_cam, proj_velo=proj_velo)
if places is None:
continue
corners = get_boxcorners(places, rotates, size)
filter_car_data(corners)
pc = filter_camera_angle(pc)
voxel = raw_to_voxel(pc, resolution=resolution, x=x, y=y, z=z)
# center_sphere = center_to_sphere(places, size, resolution=resolution, min_value=np.array([0., -40, -2.5]), scale=scale, x=x, y=y, z=(-2.5, 2.3))
# corner_label = corner_to_train(corners, center_sphere, resolution=resolution, x=x, y=y, z=(-2.5, 2.3), scale=scale, min_value=np.array([0., -40, -2.5]))
center_sphere, corner_label = create_label(places, size, corners, resolution=resolution, x=x, y=y, z=z, \
scale=scale, min_value=np.array([x[0], y[0], z[0]]))
# print center_sphere
if not center_sphere.shape[0]:
print 1
continue
g_map = create_objectness_label(center_sphere, resolution=resolution, x=(x[1] - x[0]), y=(y[1] - y[0]), z=(z[1] - z[0]), scale=scale)
g_cord = corner_label.reshape(corner_label.shape[0], -1)
g_cord = corner_to_voxel(voxel.shape, g_cord, center_sphere, scale=scale)
batch_voxel.append(voxel)
batch_g_map.append(g_map)
batch_g_cord.append(g_cord)
yield np.array(batch_voxel, dtype=np.float32)[:, :, :, :, np.newaxis], np.array(batch_g_map, dtype=np.float32), np.array(batch_g_cord, dtype=np.float32)
if __name__ == '__main__':
pcd_path = "../data/training/velodyne/*.bin"
label_path = "../data/training/label_2/*.txt"
calib_path = "../data/training/calib/*.txt"
train(5, pcd_path, label_path=label_path, resolution=0.25, calib_path=calib_path, dataformat="bin", is_velo_cam=True, \
scale=4, voxel_shape=(360, 400, 40), x=(0, 90), y=(-50, 50), z=(-5.5, 4.5))
# #
# pcd_path = "../data/training/velodyne/005000.bin"
# label_path = "../data/training/label_2/005000.txt"
# calib_path = "../data/training/calib/005000.txt"
# test(1, pcd_path, label_path=label_path, resolution=0.25, calib_path=calib_path, dataformat="bin", is_velo_cam=True, \
# scale=4, voxel_shape=(360, 400, 40), x=(0, 90), y=(-50, 50), z=(-5.5, 4.5))
# test(1, pcd_path, label_path=label_path, resolution=0.1, calib_path=calib_path, dataformat="bin", is_velo_cam=True, scale=8, voxel_shape=(800, 800, 40))