-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
270 lines (224 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import os
import json
import shutil
from resnet import setup_seed, ResNet
from loss import *
from dataset import ASVspoof2019
from collections import defaultdict
from tqdm import tqdm
import eval_metrics as em
import numpy as np
import torch
from torch.utils.data import DataLoader
torch.set_default_tensor_type(torch.FloatTensor)
def initParams():
parser = argparse.ArgumentParser(description=__doc__)
# Data folder prepare
parser.add_argument("-a", "--access_type", type=str, help="LA or PA", default='LA')
parser.add_argument("-f", "--path_to_features", type=str, help="features path",
default='/dataNVME/neil/ASVspoof2019LAFeatures/')
parser.add_argument("-p", "--path_to_protocol", type=str, help="protocol path",
default='/data/neil/DS_10283_3336/LA/ASVspoof2019_LA_cm_protocols/')
parser.add_argument("-o", "--out_fold", type=str, help="output folder", required=True, default='./models/try/')
# Dataset prepare
parser.add_argument("--feat_len", type=int, help="features length", default=750)
parser.add_argument('--padding', type=str, default='repeat', choices=['zero', 'repeat'],
help="how to pad short utterance")
parser.add_argument("--enc_dim", type=int, help="encoding dimension", default=256)
# Training hyperparameters
parser.add_argument('--num_epochs', type=int, default=100, help="Number of epochs for training")
parser.add_argument('--batch_size', type=int, default=64, help="Mini batch size for training")
parser.add_argument('--lr', type=float, default=0.0003, help="learning rate")
parser.add_argument('--lr_decay', type=float, default=0.5, help="decay learning rate")
parser.add_argument('--interval', type=int, default=10, help="interval to decay lr")
parser.add_argument('--beta_1', type=float, default=0.9, help="bata_1 for Adam")
parser.add_argument('--beta_2', type=float, default=0.999, help="beta_2 for Adam")
parser.add_argument('--eps', type=float, default=1e-8, help="epsilon for Adam")
parser.add_argument("--gpu", type=str, help="GPU index", default="1")
parser.add_argument('--num_workers', type=int, default=0, help="number of workers")
parser.add_argument('--seed', type=int, help="random number seed", default=598)
parser.add_argument('--add_loss', type=str, default="ocsoftmax",
choices=["softmax", 'amsoftmax', 'ocsoftmax'], help="loss for one-class training")
parser.add_argument('--weight_loss', type=float, default=1, help="weight for other loss")
parser.add_argument('--r_real', type=float, default=0.9, help="r_real for ocsoftmax")
parser.add_argument('--r_fake', type=float, default=0.2, help="r_fake for ocsoftmax")
parser.add_argument('--alpha', type=float, default=20, help="scale factor for ocsoftmax")
parser.add_argument('--continue_training', action='store_true', help="continue training with previously trained model")
args = parser.parse_args()
# Change this to specify GPU
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# Set seeds
setup_seed(args.seed)
if args.continue_training:
assert os.path.exists(args.out_fold)
else:
# Path for output data
if not os.path.exists(args.out_fold):
os.makedirs(args.out_fold)
else:
shutil.rmtree(args.out_fold)
os.mkdir(args.out_fold)
# Folder for intermediate results
if not os.path.exists(os.path.join(args.out_fold, 'checkpoint')):
os.makedirs(os.path.join(args.out_fold, 'checkpoint'))
else:
shutil.rmtree(os.path.join(args.out_fold, 'checkpoint'))
os.mkdir(os.path.join(args.out_fold, 'checkpoint'))
# Path for input data
assert os.path.exists(args.path_to_features)
# Save training arguments
with open(os.path.join(args.out_fold, 'args.json'), 'w') as file:
file.write(json.dumps(vars(args), sort_keys=True, separators=('\n', ':')))
with open(os.path.join(args.out_fold, 'train_loss.log'), 'w') as file:
file.write("Start recording training loss ...\n")
with open(os.path.join(args.out_fold, 'dev_loss.log'), 'w') as file:
file.write("Start recording validation loss ...\n")
# assign device
args.cuda = torch.cuda.is_available()
print('Cuda device available: ', args.cuda)
args.device = torch.device("cuda" if args.cuda else "cpu")
return args
def adjust_learning_rate(args, optimizer, epoch_num):
lr = args.lr * (args.lr_decay ** (epoch_num // args.interval))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(args):
torch.set_default_tensor_type(torch.FloatTensor)
# initialize model
lfcc_model = ResNet(3, args.enc_dim, resnet_type='18', nclasses=2).to(args.device)
if args.continue_training:
lfcc_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt')).to(args.device)
lfcc_optimizer = torch.optim.Adam(lfcc_model.parameters(), lr=args.lr,
betas=(args.beta_1, args.beta_2), eps=args.eps, weight_decay=0.0005)
training_set = ASVspoof2019(args.access_type, args.path_to_features, args.path_to_protocol, 'train',
'LFCC', feat_len=args.feat_len, padding=args.padding)
validation_set = ASVspoof2019(args.access_type, args.path_to_features, args.path_to_protocol, 'dev',
'LFCC', feat_len=args.feat_len, padding=args.padding)
trainDataLoader = DataLoader(training_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
collate_fn=training_set.collate_fn)
valDataLoader = DataLoader(validation_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers,
collate_fn=validation_set.collate_fn)
feat, _, _, _ = training_set[29]
print("Feature shape", feat.shape)
criterion = nn.CrossEntropyLoss()
if args.add_loss == "amsoftmax":
amsoftmax_loss = AMSoftmax(2, args.enc_dim, s=args.alpha, m=args.r_real).to(args.device)
amsoftmax_loss.train()
amsoftmax_optimzer = torch.optim.SGD(amsoftmax_loss.parameters(), lr=0.01)
if args.add_loss == "ocsoftmax":
ocsoftmax = OCSoftmax(args.enc_dim, r_real=args.r_real, r_fake=args.r_fake, alpha=args.alpha).to(args.device)
ocsoftmax.train()
ocsoftmax_optimzer = torch.optim.SGD(ocsoftmax.parameters(), lr=args.lr)
early_stop_cnt = 0
prev_eer = 1e8
monitor_loss = args.add_loss
for epoch_num in tqdm(range(args.num_epochs)):
lfcc_model.train()
trainlossDict = defaultdict(list)
devlossDict = defaultdict(list)
adjust_learning_rate(args, lfcc_optimizer, epoch_num)
if args.add_loss == "ocsoftmax":
adjust_learning_rate(args, ocsoftmax_optimzer, epoch_num)
elif args.add_loss == "amsoftmax":
adjust_learning_rate(args, amsoftmax_optimzer, epoch_num)
print('\nEpoch: %d ' % (epoch_num + 1))
for i, (lfcc, audio_fn, tags, labels) in enumerate(tqdm(trainDataLoader)):
lfcc = lfcc.unsqueeze(1).float().to(args.device)
labels = labels.to(args.device)
feats, lfcc_outputs = lfcc_model(lfcc)
lfcc_loss = criterion(lfcc_outputs, labels)
if args.add_loss == "softmax":
lfcc_optimizer.zero_grad()
trainlossDict[args.add_loss].append(lfcc_loss.item())
lfcc_loss.backward()
lfcc_optimizer.step()
if args.add_loss == "ocsoftmax":
ocsoftmaxloss, _ = ocsoftmax(feats, labels)
lfcc_loss = ocsoftmaxloss * args.weight_loss
lfcc_optimizer.zero_grad()
ocsoftmax_optimzer.zero_grad()
trainlossDict[args.add_loss].append(ocsoftmaxloss.item())
lfcc_loss.backward()
lfcc_optimizer.step()
ocsoftmax_optimzer.step()
if args.add_loss == "amsoftmax":
outputs, moutputs = amsoftmax_loss(feats, labels)
lfcc_loss = criterion(moutputs, labels)
trainlossDict[args.add_loss].append(lfcc_loss.item())
lfcc_optimizer.zero_grad()
amsoftmax_optimzer.zero_grad()
lfcc_loss.backward()
lfcc_optimizer.step()
amsoftmax_optimzer.step()
with open(os.path.join(args.out_fold, "train_loss.log"), "a") as log:
log.write(str(epoch_num) + "\t" + str(i) + "\t" +
str(np.nanmean(trainlossDict[monitor_loss])) + "\n")
# Val the model
lfcc_model.eval()
with torch.no_grad():
idx_loader, score_loader = [], []
for i, (lfcc, audio_fn, tags, labels) in enumerate(tqdm(valDataLoader)):
lfcc = lfcc.unsqueeze(1).float().to(args.device)
labels = labels.to(args.device)
feats, lfcc_outputs = lfcc_model(lfcc)
lfcc_loss = criterion(lfcc_outputs, labels)
score = F.softmax(lfcc_outputs, dim=1)[:, 0]
if args.add_loss == "softmax":
devlossDict["softmax"].append(lfcc_loss.item())
elif args.add_loss == "amsoftmax":
outputs, moutputs = amsoftmax_loss(feats, labels)
lfcc_loss = criterion(moutputs, labels)
score = F.softmax(outputs, dim=1)[:, 0]
devlossDict[args.add_loss].append(lfcc_loss.item())
elif args.add_loss == "ocsoftmax":
ocsoftmaxloss, score = ocsoftmax(feats, labels)
devlossDict[args.add_loss].append(ocsoftmaxloss.item())
idx_loader.append(labels)
score_loader.append(score)
scores = torch.cat(score_loader, 0).data.cpu().numpy()
labels = torch.cat(idx_loader, 0).data.cpu().numpy()
val_eer = em.compute_eer(scores[labels == 0], scores[labels == 1])[0]
with open(os.path.join(args.out_fold, "dev_loss.log"), "a") as log:
log.write(str(epoch_num) + "\t" + str(np.nanmean(devlossDict[monitor_loss])) + "\t" + str(val_eer) +"\n")
print("Val EER: {}".format(val_eer))
torch.save(lfcc_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_lfcc_model_%d.pt' % (epoch_num + 1)))
if args.add_loss == "ocsoftmax":
loss_model = ocsoftmax
torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1)))
elif args.add_loss == "amsoftmax":
loss_model = amsoftmax_loss
torch.save(loss_model, os.path.join(args.out_fold, 'checkpoint',
'anti-spoofing_loss_model_%d.pt' % (epoch_num + 1)))
else:
loss_model = None
if val_eer < prev_eer:
# Save the model checkpoint
torch.save(lfcc_model, os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt'))
if args.add_loss == "ocsoftmax":
loss_model = ocsoftmax
torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
elif args.add_loss == "amsoftmax":
loss_model = amsoftmax_loss
torch.save(loss_model, os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))
else:
loss_model = None
prev_eer = val_eer
early_stop_cnt = 0
else:
early_stop_cnt += 1
if early_stop_cnt == 100:
with open(os.path.join(args.out_fold, 'args.json'), 'a') as res_file:
res_file.write('\nTrained Epochs: %d\n' % (epoch_num - 19))
break
return lfcc_model, loss_model
if __name__ == "__main__":
args = initParams()
_, _ = train(args)
model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_lfcc_model.pt'))
if args.add_loss == "softmax":
loss_model = None
else:
loss_model = torch.load(os.path.join(args.out_fold, 'anti-spoofing_loss_model.pt'))