-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_app.py
251 lines (205 loc) · 7.32 KB
/
ex_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!pip install ipython-autotime
# %load_ext autotime
import os
from tabulate import tabulate
import numpy as np
from google.cloud import aiplatform as aip
from google.cloud import bigquery
import pandas as pd
import streamlit as st
import plotly
import plotly.graph_objects as go
import plotly.express as px
import matplotlib.pyplot as plt
import seaborn as sns
import time
import plotly.graph_objects as go
####################
NOTEBOOK = 'Vertex_AI_Streamlit'
REGION = "us-central1"
PROJECT = 'babyweight-prediction'
BUCKET = 'b_w_bucket'
BQ_DATASET = "bw_dataset"
APPNAME = "bw-prediction"
GOOGLE_APPLICATION_CREDENTIALS = 'key/babyweight-prediction-ff79f406c099.json'
os.environ["REGION"] = REGION
os.environ["PROJECT"] = PROJECT
os.environ["BUCKET"] = BUCKET
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = GOOGLE_APPLICATION_CREDENTIALS
GCS_BUCKET = f"gs://{BUCKET}"
######################
aip.init(
project=PROJECT,
location=REGION,
staging_bucket=GCS_BUCKET)
ENDPOINT_NAME = 'projects/69318036822/locations/us-central1/endpoints/4074389870305345536'
#ENDPOINT_NAME = 'projects/69318036822/locations/us-central1/endpoints/4718085758647271424'
endpoint = aip.Endpoint(
project=PROJECT,
location=REGION,
endpoint_name=ENDPOINT_NAME
)
########################
# config
st.set_page_config(
page_title="Zachary",
page_icon="🧊",
layout="wide",
)
st.markdown(
"""
<style>
[data-testid="stMetricValue"] {
font-size: 20px;
}
</style>
""",
unsafe_allow_html=True,
)
# *************SIDEBAR*************#
with st.sidebar:
st.title('Baby Weight Prediction')
# Input:
is_male = st.radio('What is the gender of the baby?', ['Boy', 'Girl'])
mother_age = st.slider('What is the age of the mother?', 10, 100, 20)
gestation_weeks = st.slider('The number of weeks of the pregnancy:', 10, 50, 39)
cigarette_use = st.radio('Maternal smoking status:', ['Unknown','Yes', 'No'])
alcohol_use = st.radio('Maternal drinking status:', ['Unknown','Yes', 'No'])
plurality = st.selectbox('How many children were born as a result of this pregnancy?',
['single(1)', 'Twins(2)', 'Triplets(3)', 'Quadruplets(4)'])
# *************GENERATE INPUT*************#
if is_male == 'Boy':
is_male = 'true'
else:
is_male = 'false'
if cigarette_use == 'Yes':
cigarette_use = 'true'
elif cigarette_use == 'Unknown':
cigarette_use = 'Unknown'
else:
cigarette_use = 'false'
if alcohol_use == 'Yes':
alcohol_use = 'true'
elif alcohol_use == 'Unknown':
alcohol_use = 'Unknown'
else:
alcohol_use = 'false'
instance = [
{'is_male': is_male,
'mother_age': str(mother_age),
'plurality': plurality,
'gestation_weeks': str(gestation_weeks),
'cigarette_use': cigarette_use,
'alcohol_use': alcohol_use,
},
]
# st.write(instance)
# *************GENERATE RESULT*************#
predicted_value = ''
# *************EXPLAINATION RESULT*************#
explain = endpoint.explain(instance)
FEATURE_COLUMNS = [
'is_male',
'mother_age',
'plurality',
'gestation_weeks',
'cigarette_use',
'alcohol_use'
]
# ************************FUNCTION**********************
def get_feature_attributions(
prediction_expl, instance_index, feature_columns=FEATURE_COLUMNS):
"""Returns the feature attributions with the baseline for a prediction example"""
rows = []
attribution = prediction_expl.explanations[instance_index].attributions[0]
baseline_score = attribution.baseline_output_value
total_att_val = baseline_score
for key in feature_columns:
feature_val = instance[instance_index][key]
att_val = attribution.feature_attributions[key]
total_att_val += att_val
rows.append([key, feature_val, att_val])
feature_attributions_rows = sorted(rows, key=lambda row: row[2], reverse=True)
feature_attributions_rows.insert(0, ["Baseline_Score", "--", baseline_score])
feature_attributions_rows.append(["Final_Prediction", "--", total_att_val])
return feature_attributions_rows
feature_attributions_rows = get_feature_attributions(explain, 0)
def generate_dataframe():
feature_list = []
feature_values = []
feature_contributions = []
feature_attributions_rows = get_feature_attributions(explain, 0)
for i in range(len(feature_attributions_rows)):
feature = feature_attributions_rows[i][0]
feature_list.append(feature)
for i in range(len(feature_attributions_rows)):
feature = feature_attributions_rows[i][1]
feature_values.append(feature)
for i in range(len(feature_attributions_rows)):
feature = feature_attributions_rows[i][2]
feature_contributions.append(feature)
zipped = list(zip(feature_list, feature_values, feature_contributions))
df = pd.DataFrame(zipped, columns=['Feature', 'Value', 'Contribution'])
return df, feature_list, feature_values, feature_contributions
df, feature_list, feature_values, feature_contributions = generate_dataframe()
###############
if is_male == 'true':
is_male = 'Boy'
else:
is_male = 'Girl'
if cigarette_use == 'true':
cigarette_use = 'Smoking'
elif cigarette_use == 'Unknown':
cigarette_use = 'Unknown'
else:
cigarette_use = 'No Smoking'
if alcohol_use == 'true':
alcohol_use = 'Drinking'
elif alcohol_use == 'Unknown':
alcohol_use = 'Unknown'
else:
alcohol_use = 'No Drinking'
# st.write(instance)
# copy df
df3 = df.copy()
df3 = df3.set_index('Feature')
# st.dataframe(df)
# st.dataframe(df3)
#####################USER INPUT DISPLAY######################
col1, col2, col3, col4, col5 = st.columns(5)
st.columns([1, 1, 3, 1, 1])
col1.metric("Baby Gender", is_male.upper(), df3.loc['is_male', 'Contribution'])
col1.metric("Mother Age", mother_age, df3.loc['mother_age', 'Contribution'])
col2.metric("Plurality", plurality.upper(), df3.loc['plurality', 'Contribution'])
col2.metric("Gestation Week Number", gestation_weeks, df3.loc['gestation_weeks', 'Contribution'])
col3.metric("Maternal smoking status", cigarette_use.upper(), df3.loc['cigarette_use', 'Contribution'])
col3.metric("Maternal drinking status", alcohol_use.upper(), df3.loc['alcohol_use', 'Contribution'])
# Display the Prediction in LBs
predicted_value = round(endpoint.predict(instance).predictions[0]['value'], 2)
with st.spinner('Generating Result...'):
time.sleep(1)
with col5:
st.subheader("Baby Weight Prediction:")
st.title(f"{predicted_value} LB")
# water fall horizontall
# layout
df["Color"] = np.where(df["Contribution"] < 0, 'Negative Contribution', 'Positive Contribution')
fig = go.Figure(go.Waterfall(
orientation="h",
measure=["relative", "relative", "relative", "relative", "relative", "relative", "relative", "total"],
y=feature_list,
x=feature_contributions,
text=feature_contributions,textposition='outside',
connector={"mode": "between", "line": {"width": 4, "color": "rgb(0, 0, 0)", "dash": "solid"}}
))
#st.subheader('Feature Importance')
st.plotly_chart(fig, use_container_width=True)
#########
df5 = df.query("Feature not in ('Baseline_Score','Final_Prediction')")
fig = px.bar(df5, x='Contribution', y='Feature',
color='Color', category_orders=df['Feature'],
text_auto=True)
st.plotly_chart(fig, use_container_width=True)
df5 = df.query("Feature not in ('Baseline_Score','Final_Prediction')")
df6 = df5[['Feature','Contribution']]
st.table(df6)