diff --git a/docs/releases.rst b/docs/releases.rst index 7283df71..3fff4211 100644 --- a/docs/releases.rst +++ b/docs/releases.rst @@ -9,6 +9,9 @@ v1.0.1 (unreleased) New Features ~~~~~~~~~~~~ +- Add parser for the OPeNDAP DMR++ XML format and integration with open_virtual_dataset (:pull:`113`) + By `Ayush Nag `_. + - Load scalar variables by default. (:pull:`205`) By `Gustavo Hidalgo `_. diff --git a/virtualizarr/kerchunk.py b/virtualizarr/kerchunk.py index abaa1cc9..a73f2cda 100644 --- a/virtualizarr/kerchunk.py +++ b/virtualizarr/kerchunk.py @@ -42,6 +42,7 @@ class FileType(AutoName): tiff = auto() fits = auto() zarr = auto() + dmrpp = auto() zarr_v3 = auto() diff --git a/virtualizarr/readers/dmrpp.py b/virtualizarr/readers/dmrpp.py new file mode 100644 index 00000000..fa66205a --- /dev/null +++ b/virtualizarr/readers/dmrpp.py @@ -0,0 +1,683 @@ +import os +import warnings +from collections import defaultdict +from collections.abc import Mapping +from typing import Any, Optional +from xml.etree import ElementTree as ET + +import numpy as np +import xarray as xr +from xarray.core.indexes import Index + +from virtualizarr.manifests import ChunkManifest, ManifestArray +from virtualizarr.types import ChunkKey +from virtualizarr.zarr import ZArray + + +class DMRParser: + """ + Parser for the OPeNDAP DMR++ XML format. + Reads groups, dimensions, coordinates, data variables, encoding, chunk manifests, and attributes. + Highly modular to allow support for older dmrpp schema versions. Includes many utility functions to extract + different information such as finding all variable tags, splitting hdf5 groups, parsing dimensions, and more. + + OPeNDAP DMR++ homepage: https://docs.opendap.org/index.php/DMR%2B%2B + """ + + # DAP and DMRPP XML namespaces + _ns = { + "dap": "http://xml.opendap.org/ns/DAP/4.0#", + "dmr": "http://xml.opendap.org/dap/dmrpp/1.0.0#", + } + # DAP data types to numpy data types + _dap_np_dtype = { + "Byte": "uint8", + "UByte": "uint8", + "Int8": "int8", + "UInt8": "uint8", + "Int16": "int16", + "UInt16": "uint16", + "Int32": "int32", + "UInt32": "uint32", + "Int64": "int64", + "UInt64": "uint64", + "Url": "object", + "Float32": "float32", + "Float64": "float64", + "String": "object", + } + # Default zlib compression value + _default_zlib_value = 6 + # Encoding keys that should be removed from attributes and placed in xarray encoding dict + _encoding_keys = {"_FillValue", "missing_value", "scale_factor", "add_offset"} + + def __init__(self, dmr: str, data_filepath: Optional[str] = None): + """ + Initialize the DMRParser with the given DMR data and data file path. + + Parameters + ---------- + dmr : str + The DMR file contents as a string. + + data_filepath : str, optional + The path to the actual data file that will be set in the chunk manifests. + If None, the data file path is taken from the DMR file. + """ + self.root = ET.fromstring(dmr) + self.data_filepath = ( + data_filepath if data_filepath is not None else self.root.attrib["name"] + ) + + def parse_dataset( + self, group=None, indexes: Mapping[str, Index] = {} + ) -> xr.Dataset: + """ + Parses the given file and creates a virtual xr.Dataset with ManifestArrays. + + Parameters + ---------- + group : str + The group to parse. If None, and no groups are present, the dataset is parsed. + If None and groups are present, the first group is parsed. + + indexes : Mapping[str, Index], default is {} + Indexes to use on the returned xarray Dataset. + Default is {} which will avoid creating any indexes + + Returns + ------- + An xr.Dataset wrapping virtualized zarr arrays. + + Examples + -------- + Open a sample DMR++ file and parse the dataset + + >>> import requests + >>> r = requests.get("https://github.com/OPENDAP/bes/raw/3e518f6dc2f625b0b83cfb6e6fd5275e4d6dcef1/modules/dmrpp_module/data/dmrpp/chunked_threeD.h5.dmrpp") + >>> parser = DMRParser(r.text) + >>> vds = parser.parse_dataset() + >>> vds + Size: 4MB + Dimensions: (phony_dim_0: 100, phony_dim_1: 100, phony_dim_2: 100) + Dimensions without coordinates: phony_dim_0, phony_dim_1, phony_dim_2 + Data variables: + d_8_chunks (phony_dim_0, phony_dim_1, phony_dim_2) float32 4MB ManifestA... + + >>> vds2 = open_virtual_dataset("https://github.com/OPENDAP/bes/raw/3e518f6dc2f625b0b83cfb6e6fd5275e4d6dcef1/modules/dmrpp_module/data/dmrpp/chunked_threeD.h5.dmrpp", filetype="dmrpp", indexes={}) + >>> vds2 + Size: 4MB + Dimensions: (phony_dim_0: 100, phony_dim_1: 100, phony_dim_2: 100) + Dimensions without coordinates: phony_dim_0, phony_dim_1, phony_dim_2 + Data variables: + d_8_chunks (phony_dim_0, phony_dim_1, phony_dim_2) float32 4MB ManifestA... + """ + if group is not None: + # group = "/" + group.strip("/") # ensure group is in form "/a/b" + group = os.path.normpath(group).removeprefix( + "/" + ) # ensure group is in form "a/b/c" + if self._is_hdf5(self.root): + return self._parse_hdf5_dataset(self.root, group, indexes) + if self.data_filepath.endswith(".nc"): + return self._parse_netcdf4_dataset(self.root, group, indexes) + raise ValueError("DMR file must be HDF5 or netCDF4 based") + + def _parse_netcdf4_dataset( + self, + root: ET.Element, + group: Optional[str] = None, + indexes: Mapping[str, Index] = {}, + ) -> xr.Dataset: + """ + Parse the dataset from the netcdf4 based dmrpp with groups, starting at the given group. + Set root to the given group. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + group : str + The group to parse. If None, and no groups are present, the dataset is parsed. + If None and groups are present, the first group is parsed. + + Returns + ------- + xr.Dataset + """ + group_tags = root.findall("dap:Group", self._ns) + if len(group_tags) == 0: + if group is not None: + # no groups found and group specified -> warning + warnings.warn( + "No groups found in NetCDF4 DMR file; ignoring group parameter" + ) + # no groups found and no group specified -> parse dataset + return self._parse_dataset(root, indexes) + all_groups = self._split_netcdf4(root) + if group is None: + # groups found and no group specified -> parse first group + return self._parse_dataset(group_tags[0], indexes) + if group in all_groups: + # groups found and group specified -> parse specified group + return self._parse_dataset(all_groups[group], indexes) + else: + # groups found and specified group not found -> error + raise ValueError(f"Group {group} not found in NetCDF4 DMR file") + + def _split_netcdf4(self, root: ET.Element) -> dict[str, ET.Element]: + """ + Split the input element into several ET.Elements by netcdf4 group + E.g. {"left": , "right": } + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + dict[str, ET.Element] + """ + group_tags = root.findall("dap:Group", self._ns) + all_groups: dict[str, ET.Element] = defaultdict( + lambda: ET.Element(root.tag, root.attrib) + ) + for group_tag in group_tags: + all_groups[os.path.normpath(group_tag.attrib["name"])] = group_tag + return all_groups + + def _is_hdf5(self, root: ET.Element) -> bool: + """Check if the DMR file is HDF5 based.""" + if root.find(".//dap:Attribute[@name='fullnamepath']", self._ns) is not None: + return True + if root.find("./dap:Attribute[@name='HDF5_GLOBAL']", self._ns) is not None: + return True + return False + + def _parse_hdf5_dataset( + self, + root: ET.Element, + group: Optional[str] = None, + indexes: Mapping[str, Index] = {}, + ) -> xr.Dataset: + """ + Parse the dataset from the HDF5 based dmrpp with groups, starting at the given group. + Set root to the given group. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + group : str + The group to parse. If None, and no groups are present, the dataset is parsed. + If None and groups are present, the first group is parsed. + + indexes : Mapping[str, Index], default is {} + Indexes to use on the returned xarray Dataset. + Default is {} which will avoid creating any indexes + + Returns + ------- + xr.Dataset + """ + all_groups = self._split_hdf5(root=root) + if len(all_groups) == 0: + raise ValueError("No groups found in HDF based dmrpp file") + if group is None: + # pick a random group if no group is specified + group = next(iter(all_groups)) + attrs = {} + for attr_tag in root.iterfind("dap:Attribute", self._ns): + if attr_tag.attrib["type"] != "Container": + attrs.update(self._parse_attribute(attr_tag)) + if group in all_groups: + # replace aliased variable names with original names: gt1r_heights -> heights + orignames = self._find_original_names(all_groups[group]) + vds = self._parse_dataset(all_groups[group], indexes) + # Only one group so found attrs are global attrs + if len(all_groups) == 1: + vds.attrs.update(attrs) + return vds.rename(orignames) + raise ValueError(f"Group {group} not found in HDF5 dmrpp file") + + def _find_original_names(self, root: ET.Element) -> dict[str, str]: + """ + Find the original variable names from the HDF based groups. E.g. gt1r_heights -> heights + + E.g. if the variable name is 'gt1r_heights', the original name is 'heights' from the group 'gt1r'. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + dict[str, str] + """ + + orignames: dict[str, str] = {} + vars_tags: list[ET.Element] = [] + for dap_dtype in self._dap_np_dtype: + vars_tags += root.findall(f"dap:{dap_dtype}", self._ns) + for var_tag in vars_tags: + origname_tag = var_tag.find( + "./dap:Attribute[@name='origname']/dap:Value", self._ns + ) + if origname_tag is not None and origname_tag.text is not None: + orignames[var_tag.attrib["name"]] = origname_tag.text + return orignames + + def _split_hdf5(self, root: ET.Element) -> dict[str, ET.Element]: + """ + Split the input element into several ET.Elements by HDF5 group + E.g. {"gtr1/heights": , "gtr1/temperatures": }. Builds up new elements + each with dimensions, variables, and attributes. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + dict[str, ET.Element] + """ + # Add all variable, dimension, and attribute tags to their respective groups + groups_roots: dict[str, ET.Element] = defaultdict( + lambda: ET.Element(root.tag, root.attrib) + ) + group_dims: dict[str, set[str]] = defaultdict( + set + ) # {"gt1r/heights": {"dim1", "dim2", ...}} + vars_tags: list[ET.Element] = [] + for dap_dtype in self._dap_np_dtype: + vars_tags += root.findall(f"dap:{dap_dtype}", self._ns) + # Variables + for var_tag in vars_tags: + fullname_tag = var_tag.find( + "./dap:Attribute[@name='fullnamepath']/dap:Value", self._ns + ) + if fullname_tag is not None and fullname_tag.text is not None: + # '/gt1r/heights/ph_id_pulse' -> 'gt1r/heights' + group_name = os.path.dirname(fullname_tag.text).removeprefix("/") + groups_roots[group_name].append(var_tag) + dim_tags = var_tag.findall("dap:Dim", self._ns) + dims = self._parse_multi_dims(dim_tags) + group_dims[group_name].update(dims.keys()) + # Dimensions + for dim_tag in root.iterfind("dap:Dimension", self._ns): + for g, d in group_dims.items(): + if dim_tag.attrib["name"] in d: + groups_roots[g].append(dim_tag) + # Attributes + container_attr_tag = root.find("dap:Attribute[@name='HDF5_GLOBAL']", self._ns) + if container_attr_tag is None: + attrs_tags = root.findall("dap:Attribute", self._ns) + for attr_tag in attrs_tags: + fullname_tag = attr_tag.find( + "./dap:Attribute[@name='fullnamepath']/dap:Value", self._ns + ) + if fullname_tag is not None and fullname_tag.text is not None: + group_name = os.path.dirname(fullname_tag.text).removeprefix("/") + # Add all attributes to the new dataset + groups_roots[group_name].extend(attr_tag) + else: + groups_roots[next(iter(groups_roots))].extend(container_attr_tag) + return groups_roots + + def _parse_dataset( + self, root: ET.Element, indexes: Mapping[str, Index] = {} + ) -> xr.Dataset: + """ + Parse the dataset using the root element of the DMR file. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + xr.Dataset + """ + # Dimension names and sizes + dim_tags = root.findall("dap:Dimension", self._ns) + dataset_dims = self._parse_multi_dims(dim_tags) + # Data variables and coordinates + coord_names = self._find_coord_names(root) + # if no coord_names are found or coords don't include dims, dims are used as coords + if len(coord_names) == 0 or len(coord_names) < len(dataset_dims): + coord_names = set(dataset_dims.keys()) + # Seperate and parse coords + data variables + coord_vars: dict[str, xr.Variable] = {} + data_vars: dict[str, xr.Variable] = {} + for var_tag in self._find_var_tags(root): + variable = self._parse_variable(var_tag, dataset_dims) + if var_tag.attrib["name"] in coord_names: + coord_vars[var_tag.attrib["name"]] = variable + else: + data_vars[var_tag.attrib["name"]] = variable + # Attributes + attrs: dict[str, str] = {} + for attr_tag in self.root.iterfind("dap:Attribute", self._ns): + attrs.update(self._parse_attribute(attr_tag)) + return xr.Dataset( + data_vars=data_vars, + coords=xr.Coordinates(coords=coord_vars, indexes=indexes), + attrs=attrs, + ) + + def _find_var_tags(self, root: ET.Element) -> list[ET.Element]: + """ + Find all variable tags in the DMR file. Also known as array tags. + Tags are labeled with the DAP data type. E.g. , , + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + list[ET.Element] + """ + vars_tags: list[ET.Element] = [] + for dap_dtype in self._dap_np_dtype: + vars_tags += root.findall(f"dap:{dap_dtype}", self._ns) + return vars_tags + + def _find_coord_names(self, root: ET.Element) -> set[str]: + """ + Find the name of all coordinates in root. Checks inside all variables and global attributes. + + Parameters + ---------- + root : ET.Element + The root element of the DMR file. + + Returns + ------- + set[str] : The set of unique coordinate names. + """ + # Check for coordinate names within each variable attributes + coord_names: set[str] = set() + for var_tag in self._find_var_tags(root): + coord_tag = var_tag.find( + "./dap:Attribute[@name='coordinates']/dap:Value", self._ns + ) + if coord_tag is not None and coord_tag.text is not None: + coord_names.update(coord_tag.text.split(" ")) + for map_tag in var_tag.iterfind("dap:Map", self._ns): + coord_names.add(map_tag.attrib["name"].removeprefix("/")) + # Check for coordinate names in a global attribute + coord_tag = var_tag.find("./dap:Attribute[@name='coordinates']", self._ns) + if coord_tag is not None and coord_tag.text is not None: + coord_names.update(coord_tag.text.split(" ")) + return coord_names + + def _parse_dim(self, root: ET.Element) -> dict[str, int | None]: + """ + Parse single or tag + + If the tag has no name attribute, it is a phony dimension. E.g. --> {"phony_dim": 300} + If the tag has no size attribute, it is an unlimited dimension. E.g. --> {"time": None} + If the tag has both name and size attributes, it is a regular dimension. E.g. --> {"lat": 1447} + + Parameters + ---------- + root : ET.Element + The root element Dim/Dimension tag + + Returns + ------- + dict + E.g. {"time": 1, "lat": 1447, "lon": 2895}, {"phony_dim": 300}, {"time": None, "lat": None, "lon": None} + """ + if "name" not in root.attrib and "size" in root.attrib: + return {"phony_dim": int(root.attrib["size"])} + if "name" in root.attrib and "size" not in root.attrib: + return {os.path.basename(root.attrib["name"]): None} + if "name" in root.attrib and "size" in root.attrib: + return {os.path.basename(root.attrib["name"]): int(root.attrib["size"])} + raise ValueError("Not enough information to parse Dim/Dimension tag") + + def _parse_multi_dims( + self, dim_tags: list[ET.Element], global_dims: dict[str, int] = {} + ) -> dict: + """ + Parse multiple or tags. Generally tags are found within dmrpp variable tags. + + Returns best possible matching of {dimension: shape} present in the list and global_dims. E.g tags=(Dim("lat", None), Dim("lon", None)) and global_dims={"lat": 100, "lon": 100, "time": 5} --> {"lat": 100, "lon": 100} + + E.g. tags=(Dim("time", None), Dim("", 200)) and global_dims={"lat": 100, "lon": 100, "time": 5} --> {"time": 5, "phony_dim0": 200} + + This function is often used to fill in missing sizes from the global_dims. E.g. Variable tags may contain only dimension names and not sizes. If the {name: size} matching is known from the global_dims, it is used to fill in the missing sizes. + + Parameters + ---------- + dim_tags : tuple[ET.Element] + A tuple of ElementTree Elements representing dimensions in the DMR file. + + global_dims : dict + A dictionary of dimension names and sizes. E.g. {"time": 1, "lat": 1447, "lon": 2895} + + Returns + ------- + dict + E.g. {"time": 1, "lat": 1447, "lon": 2895} + """ + dims: dict[str, int | None] = {} + for dim_tag in dim_tags: + dim: dict[str, int | None] = self._parse_dim(dim_tag) + if "phony_dim" in dim: + dims["phony_dim_" + str(len(dims))] = dim["phony_dim"] + else: + dims.update(dim) + for name, size in list(dims.items()): + if name in global_dims and size is None: + dims[name] = global_dims[name] + return dims + + def _parse_variable( + self, var_tag: ET.Element, dataset_dims: dict[str, int] + ) -> xr.Variable: + """ + Parse a variable from a DMR tag. + + Parameters + ---------- + var_tag : ET.Element + An ElementTree Element representing a variable in the DMR file. Will have DAP dtype as tag. + + dataset_dims : dict + A dictionary of dimension names and sizes. E.g. {"time": 1, "lat": 1447, "lon": 2895} + Must contain at least all the dimensions used by the variable. Necessary since the variable + metadata only contains the dimension names and not the sizes. + + Returns + ------- + xr.Variable + """ + # Dimension names + dim_tags = var_tag.findall("dap:Dim", self._ns) + dim_shapes = self._parse_multi_dims(dim_tags, dataset_dims) + # convert DAP dtype to numpy dtype + dtype = np.dtype( + self._dap_np_dtype[var_tag.tag.removeprefix("{" + self._ns["dap"] + "}")] + ) + # Chunks and Filters + filters = None + shape: tuple[int, ...] = tuple(dim_shapes.values()) + chunks_shape = shape + chunks_tag = var_tag.find("dmr:chunks", self._ns) + if chunks_tag is not None: + # Chunks + found_chunk_dims = self._parse_chunks_dimensions(chunks_tag) + chunks_shape = found_chunk_dims if found_chunk_dims is not None else shape + chunkmanifest = self._parse_chunks(chunks_tag, chunks_shape) + # Filters + filters = self._parse_filters(chunks_tag, dtype) + # Attributes + attrs: dict[str, Any] = {} + for attr_tag in var_tag.iterfind("dap:Attribute", self._ns): + attrs.update(self._parse_attribute(attr_tag)) + # Fill value is placed in encoding and thus removed from attributes + fill_value = attrs.pop("_FillValue", 0.0) + # Remove attributes only used for parsing logic + attrs.pop("fullnamepath", None) + attrs.pop("origname", None) + attrs.pop("coordinates", None) + # create ManifestArray and ZArray + zarray = ZArray( + chunks=chunks_shape, + dtype=dtype, + fill_value=fill_value, + filters=filters, + order="C", + shape=shape, + ) + marr = ManifestArray(zarray=zarray, chunkmanifest=chunkmanifest) + encoding = {k: attrs.get(k) for k in self._encoding_keys if k in attrs} + return xr.Variable( + dims=dim_shapes.keys(), data=marr, attrs=attrs, encoding=encoding + ) + + def _parse_attribute(self, attr_tag: ET.Element) -> dict[str, Any]: + """ + Parse an attribute from a DMR attr tag. Converts the attribute value to a native python type. + + Parameters + ---------- + attr_tag : ET.Element + An ElementTree Element with an tag. + + Returns + ------- + dict + """ + attr: dict[str, Any] = {} + values = [] + if "type" in attr_tag.attrib and attr_tag.attrib["type"] == "Container": + return attr + dtype = np.dtype(self._dap_np_dtype[attr_tag.attrib["type"]]) + # if multiple Value tags are present, store as "key": "[v1, v2, ...]" + for value_tag in attr_tag: + # cast attribute to native python type using dmr provided dtype + val = ( + dtype.type(value_tag.text).item() + if dtype != np.object_ + else value_tag.text + ) + if val == "*": + val = np.nan + values.append(val) + attr[attr_tag.attrib["name"]] = values[0] if len(values) == 1 else values + return attr + + def _parse_filters( + self, chunks_tag: ET.Element, dtype: np.dtype + ) -> list[dict] | None: + """ + Parse filters from a DMR chunks tag. + + Parameters + ---------- + chunks_tag : ET.Element + An ElementTree Element with a tag. + + dtype : np.dtype + The numpy dtype of the variable. + + Returns + ------- + list[dict] | None + E.g. [{"id": "shuffle", "elementsize": 4}, {"id": "zlib", "level": 4}] + """ + if "compressionType" in chunks_tag.attrib: + filters: list[dict] = [] + # shuffle deflate --> ["shuffle", "deflate"] + compression_types = chunks_tag.attrib["compressionType"].split(" ") + for c in compression_types: + if c == "shuffle": + filters.append({"id": "shuffle", "elementsize": dtype.itemsize}) + elif c == "deflate": + filters.append( + { + "id": "zlib", + "level": int( + chunks_tag.attrib.get( + "deflateLevel", self._default_zlib_value + ) + ), + } + ) + return filters + return None + + def _parse_chunks_dimensions( + self, chunks_tag: ET.Element + ) -> tuple[int, ...] | None: + """ + Parse the chunk dimensions from a DMR chunks tag. Returns None if no chunk dimensions are found. + + Parameters + ---------- + chunks_tag : ET.Element + An ElementTree Element with a tag. + + Returns + ------- + tuple[int, ...] | None + + """ + chunk_dim_tag = chunks_tag.find("dmr:chunkDimensionSizes", self._ns) + if chunk_dim_tag is not None and chunk_dim_tag.text is not None: + # 1 1447 2895 -> (1, 1447, 2895) + return tuple(map(int, chunk_dim_tag.text.split())) + return None + + def _parse_chunks( + self, chunks_tag: ET.Element, chunks_shape: tuple[int, ...] + ) -> ChunkManifest: + """ + Parse the chunk manifest from a DMR chunks tag. + + Parameters + ---------- + chunks_tag : ET.Element + An ElementTree Element with a tag. + + chunks_shape : tuple + Chunk sizes for each dimension. E.g. (1, 1447, 2895) + + Returns + ------- + ChunkManifest + """ + chunkmanifest: dict[ChunkKey, object] = {} + default_num: list[int] = ( + [0 for i in range(len(chunks_shape))] if chunks_shape else [0] + ) + chunk_key_template = ".".join(["{}" for i in range(len(default_num))]) + for chunk_tag in chunks_tag.iterfind("dmr:chunk", self._ns): + chunk_num = default_num + if "chunkPositionInArray" in chunk_tag.attrib: + # "[0,1023,10235]" -> ["0","1023","10235"] + chunk_pos = chunk_tag.attrib["chunkPositionInArray"][1:-1].split(",") + # [0,1023,10235] // [1, 1023, 2047] -> [0,1,5] + chunk_num = [ + int(chunk_pos[i]) // chunks_shape[i] + for i in range(len(chunks_shape)) + ] + # [0,1,5] -> "0.1.5" + chunk_key = ChunkKey(chunk_key_template.format(*chunk_num)) + chunkmanifest[chunk_key] = { + "path": self.data_filepath, + "offset": int(chunk_tag.attrib["offset"]), + "length": int(chunk_tag.attrib["nBytes"]), + } + return ChunkManifest(entries=chunkmanifest) diff --git a/virtualizarr/tests/test_readers/test_dmrpp.py b/virtualizarr/tests/test_readers/test_dmrpp.py new file mode 100644 index 00000000..d2b19d60 --- /dev/null +++ b/virtualizarr/tests/test_readers/test_dmrpp.py @@ -0,0 +1,22 @@ +import pytest +import xarray as xr + +from virtualizarr import open_virtual_dataset +from virtualizarr.tests import network + +urls = [ + ( + "netcdf4", + "https://github.com/OPENDAP/bes/raw/3e518f6dc2f625b0b83cfb6e6fd5275e4d6dcef1/modules/dmrpp_module/data/dmrpp/chunked_threeD.h5", + "dmrpp", + "https://github.com/OPENDAP/bes/raw/3e518f6dc2f625b0b83cfb6e6fd5275e4d6dcef1/modules/dmrpp_module/data/dmrpp/chunked_threeD.h5.dmrpp", + ) +] + + +@network +@pytest.mark.parametrize("data_type, data_url, dmrpp_type, dmrpp_url", urls) +def test_dmrpp_reader(data_type, data_url, dmrpp_type, dmrpp_url): + result = open_virtual_dataset(dmrpp_url, indexes={}, filetype=dmrpp_type) + expected = open_virtual_dataset(data_url, indexes={}) + xr.testing.assert_identical(result, expected) diff --git a/virtualizarr/utils.py b/virtualizarr/utils.py index aa73e7f8..092ddd25 100644 --- a/virtualizarr/utils.py +++ b/virtualizarr/utils.py @@ -16,7 +16,7 @@ def _fsspec_openfile_from_filepath( *, filepath: str, - reader_options: Optional[dict] = {}, + reader_options: Optional[dict] = None, ) -> OpenFileType: """Converts input filepath to fsspec openfile object. @@ -44,6 +44,9 @@ def _fsspec_openfile_from_filepath( universal_filepath = UPath(filepath) protocol = universal_filepath.protocol + if reader_options is None: + reader_options = {} + storage_options = reader_options.get("storage_options", {}) # type: ignore fpath = fsspec.filesystem(protocol, **storage_options).open(filepath) diff --git a/virtualizarr/xarray.py b/virtualizarr/xarray.py index 35d60b6f..0fb33815 100644 --- a/virtualizarr/xarray.py +++ b/virtualizarr/xarray.py @@ -137,6 +137,21 @@ def open_virtual_dataset( return open_virtual_dataset_from_v3_store( storepath=filepath, drop_variables=drop_variables, indexes=indexes ) + elif filetype == FileType.dmrpp: + from virtualizarr.readers.dmrpp import DMRParser + + if loadable_variables != [] or cftime_variables != [] or indexes is None: + raise NotImplementedError( + "Specifying `loadable_variables`, `cftime_variables` or auto-creating indexes with `indexes=None` is not supported for dmrpp files." + ) + + fpath = _fsspec_openfile_from_filepath( + filepath=filepath, reader_options=reader_options + ) + parser = DMRParser(fpath.read(), data_filepath=filepath.strip(".dmrpp")) + vds = parser.parse_dataset() + vds.drop_vars(drop_variables) + return vds else: if reader_options is None: reader_options = {}