Code for our IEEE Open Journal of Signal Processing paper: "PDWN: Pyramid Deformable Warping Network for Video Interpolation (https://ieeexplore.ieee.org/document/9416770)"
- demos
- requirements
- train
- test
- evaluate on videos
- Ubuntu
- Pytorch
- Cuda (10.1) & Cudnn (10.1)
- mmcv-full (https://github.com/open-mmlab/mmcv. please follow the guidence to install mmcv properly.)
- ffmpeg
Vimeo-triplet can be downloaded from http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
To train your own model, please use the following command:
python train.py --name experiment --dataroot [PATH TO THE DATASET] --dataset vimeo_tri --model deform --kernel 3 --loss L1 --batch_size 32 --use_cuda True
To replicate the results presented in the paper, please use the following command (Model is saved under ./checkpoints/vimeo_plus_single_no_norm_crop)
python test.py --name vimeo_plus_single_no_norm_crop --dataroot [PATH TO THE DATASET] --ensemble True --kernel 3 --model_load latest --result_path ./results --checkpoint_path ./checkpoints --dataset vimeo_tri
python seq_eval.py --video_path ./sunflower_1080p25.mp4 --name vimeo_plus_single_no_norm_crop --model deform --kernel 3 --t_interp 2