-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkge_model.py
170 lines (138 loc) · 5.55 KB
/
kge_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch.nn as nn
import torch
class KGEModel(nn.Module):
def __init__(self, args):
super(KGEModel, self).__init__()
self.args = args
self.emb_dim = args.dim
self.epsilon = 2.0
self.gamma = torch.Tensor([args.gamma])
self.embedding_range = torch.Tensor([(self.gamma.item() + self.epsilon) / args.dim])
self.pi = 3.14159265358979323846
def forward(self, sample, ent_emb, rel_emb, mode='single'):
'''
Forward function that calculate the score of a batch of triples.
In the 'single' mode, sample is a batch of triple.
In the 'head-batch' or 'tail-batch' mode, sample consists two part.
The first part is usually the positive sample.
And the second part is the entities in the negative samples.
Because negative samples and positive samples usually share two elements
in their triple ((head, relation) or (relation, tail)).
'''
self.entity_embedding = ent_emb
self.relation_embedding = rel_emb
if mode == 'single':
batch_size, negative_sample_size = sample.size(0), 1
head = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:, 0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=sample[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:, 2]
).unsqueeze(1)
elif mode == 'head-batch':
tail_part, head_part = sample
if head_part != None:
batch_size, negative_sample_size = head_part.size(0), head_part.size(1)
if head_part == None:
head = self.entity_embedding.unsqueeze(0)
else:
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part.view(-1)
).view(batch_size, negative_sample_size, -1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=tail_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part[:, 2]
).unsqueeze(1)
elif mode == 'tail-batch':
head_part, tail_part = sample
if tail_part != None:
try:
batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)
except IndexError:
print(tail_part)
try:
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
except:
pass
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=head_part[:, 1]
).unsqueeze(1)
if tail_part == None:
tail = self.entity_embedding.unsqueeze(0)
else:
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
elif mode == 'rel-batch':
head_part, tail_part = sample
if tail_part != None:
batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 2]
).unsqueeze(1)
if tail_part == None:
relation = self.relation_embedding.unsqueeze(0)
else:
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
else:
raise ValueError('mode %s not supported' % mode)
score = self.RotatE(head, relation, tail, mode)
return score
def RotatE(self, head, relation, tail, mode):
re_head, im_head = torch.chunk(head, 2, dim=2)
re_tail, im_tail = torch.chunk(tail, 2, dim=2)
pi = 3.14159265358979323846
# Make phases of relations uniformly distributed in [-pi, pi]
phase_relation = relation / (self.embedding_range.item() / pi)
re_relation = torch.cos(phase_relation)
im_relation = torch.sin(phase_relation)
if mode == 'head-batch':
re_score = re_relation * re_tail + im_relation * im_tail
im_score = re_relation * im_tail - im_relation * re_tail
re_score = re_score - re_head
im_score = im_score - im_head
else:
re_score = re_head * re_relation - im_head * im_relation
im_score = re_head * im_relation + im_head * re_relation
re_score = re_score - re_tail
im_score = im_score - im_tail
score = torch.stack([re_score, im_score], dim=0)
score = score.norm(dim=0)
score = self.gamma.item() - score.sum(dim=2)
return score