-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
476 lines (402 loc) · 22.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import argparse
import json
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from models import KGReasoning
from dataloader import TestDataset, TrainDataset, SingledirectionalOneShotIterator
from tensorboardX import SummaryWriter
import time
import pickle
from collections import defaultdict
from tqdm import tqdm
from util import flatten_query, list2tuple, parse_time, set_global_seed, eval_tuple
from ruledata import Data
ours = 'ns'
query_name_dict = {('e', ('r',)): '1p',
('e', ('r', 'r')): '2p',
('e', ('r', 'r', 'r')): '3p',
(('e', ('r',)), ('e', ('r',))): '2i',
(('e', ('r',)), ('e', ('r',)), ('e', ('r',))): '3i',
((('e', ('r',)), ('e', ('r',))), ('r',)): 'ip',
(('e', ('r', 'r')), ('e', ('r',))): 'pi',
(('e', ('r',)), ('e', ('r', 'n'))): '2in',
(('e', ('r',)), ('e', ('r',)), ('e', ('r', 'n'))): '3in',
((('e', ('r',)), ('e', ('r', 'n'))), ('r',)): 'inp',
(('e', ('r', 'r')), ('e', ('r', 'n'))): 'pin',
(('e', ('r', 'r', 'n')), ('e', ('r',))): 'pni',
(('e', ('r',)), ('e', ('r',)), ('u',)): '2u-DNF',
((('e', ('r',)), ('e', ('r',)), ('u',)), ('r',)): 'up-DNF',
((('e', ('r', 'n')), ('e', ('r', 'n'))), ('n',)): '2u-DM',
((('e', ('r', 'n')), ('e', ('r', 'n'))), ('n', 'r')): 'up-DM'
}
name_query_dict = {value: key for key, value in query_name_dict.items()}
all_tasks = list(name_query_dict.keys())
def parse_args(args=None):
parser = argparse.ArgumentParser(
description='Training and Testing Knowledge Graph Embedding Models',
usage='train.py [<args>] [-h | --help]'
)
parser.add_argument('--cuda', action='store_true', help='use GPU')
parser.add_argument('--do_train', action='store_true', help="do train")
parser.add_argument('--do_valid', action='store_true', help="do valid")
parser.add_argument('--do_test', action='store_true', help="do test")
parser.add_argument('--data_path', type=str, default=None, help="KG data path")
parser.add_argument('-n', '--negative_sample_size', default=128, type=int, help="negative entities sampled per query")
parser.add_argument('-d', '--hidden_dim', default=500, type=int, help="embedding dimension")
parser.add_argument('-g', '--gamma', default=24.0, type=float, help="margin in the loss")
parser.add_argument('-b', '--batch_size', default=1024, type=int, help="batch size of queries")
parser.add_argument('--test_batch_size', default=1, type=int, help='valid/test batch size')
parser.add_argument('-lr', '--learning_rate', default=0.0001, type=float)
parser.add_argument('-cpu', '--cpu_num', default=10, type=int, help="used to speed up torch.dataloader")
parser.add_argument('-save', '--save_path', default=None, type=str, help="no need to set manually, will configure automatically")
parser.add_argument('--max_steps', default=1000000, type=int, help="maximum iterations to train")
parser.add_argument('--warm_up_steps', default=None, type=int, help="no need to set manually, will configure automatically")
parser.add_argument('--save_checkpoint_steps', default=1000, type=int, help="save checkpoints every xx steps")
parser.add_argument('--valid_steps', default=10000, type=int, help="evaluate validation queries every xx steps")
parser.add_argument('--log_steps', default=100, type=int, help='train log every xx steps')
parser.add_argument('--test_log_steps', default=10000, type=int, help='valid/test log every xx steps')
parser.add_argument('--nentity', type=int, default=0, help='DO NOT MANUALLY SET')
parser.add_argument('--nrelation', type=int, default=0, help='DO NOT MANUALLY SET')
parser.add_argument('--geo', default='vec', type=str, choices=['vec', 'box', 'beta', 'ns'], help='the reasoning model, vec for GQE, box for Query2box, beta for BetaE, ns for neural-symbolic')
parser.add_argument('--print_on_screen', action='store_true')
parser.add_argument('--tasks', default='1p.2p.3p.2i.3i.ip.pi.2in.3in.inp.pin.pni.2u.up', type=str, help="tasks connected by dot, refer to the BetaE paper for detailed meaning and structure of each task")
parser.add_argument('--seed', default=0, type=int, help="random seed")
parser.add_argument('-betam', '--beta_mode', default="(1600,2)", type=str, help='(hidden_dim,num_layer) for BetaE relational projection')
parser.add_argument('-boxm', '--box_mode', default="(none,0.02)", type=str, help='(offset activation,center_reg) for Query2box, center_reg balances the in_box dist and out_box dist')
parser.add_argument('-pretrain', '--KGE_pretrain', action='store_true', help="use the kg pretrain model")
parser.add_argument('-kge', '--kge_mode', default="TransE", type=str, help='KG embedding used in \'ns\' way')
parser.add_argument('-weight', '--loss_weight', default=0.1, type=int, help='the weight to balance the loss of the two parts of \'ns\'')
parser.add_argument('--prefix', default=None, type=str, help='prefix of the log path')
parser.add_argument('--checkpoint_path', default=None, type=str, help='path for loading the checkpoints')
parser.add_argument('-evu', '--evaluate_union', default="DNF", type=str, choices=['DNF', 'DM'], help='the way to evaluate union queries, transform it to disjunctive normal form (DNF) or use the De Morgan\'s laws (DM)')
parser.add_argument('-newloss', '--new_loss', action='store_true', help="use the v2b loss")
parser.add_argument('-pre_1p', default=False, action='store_true', help="pretrain 1p tasks")
parser.add_argument('-lambdas', default='', type=str, help="hyper parameter to use vec&emb, use ';' to split")
# HAKE
parser.add_argument('-phase_w', '--phase_weight', default=1.0, type=float, help="phase_weight of HAKE")
parser.add_argument('-modulus_w', '--modulus_weight', default=3.5, type=float, help="modulus_weight of HAKE")
return parser.parse_args(args)
def save_model(model, optimizer, save_variable_list, args, steps):
argparse_dict = vars(args)
with open(os.path.join(args.save_path, 'config.json'), 'w') as fjson:
json.dump(argparse_dict, fjson)
torch.save({
**save_variable_list,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
os.path.join(args.save_path, 'checkpoint')
)
def set_logger(args):
if args.do_train:
log_file = os.path.join(args.save_path, 'train.log')
elif args.do_valid:
log_file = os.path.join(args.save_path, 'valid.log')
else:
log_file = os.path.join(args.save_path, 'test.log')
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S',
filename=log_file,
filemode='a+'
)
if args.print_on_screen:
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
def log_metrics(mode, step, metrics):
for metric in metrics:
logging.info('%s %s at step %d: %f' % (mode, metric, step, metrics[metric]))
def evaluate(model, tp_answers, fn_answers, args, dataloader, query_name_dict, mode, step, writer):
average_metrics = defaultdict(float)
all_metrics = defaultdict(float)
metrics = model.test_step(model, tp_answers, fn_answers, args, dataloader, query_name_dict)
num_query_structures = 0
num_queries = 0
for query_structure in metrics:
log_metrics(mode+" "+query_name_dict[query_structure], step, metrics[query_structure])
for metric in metrics[query_structure]:
writer.add_scalar("_".join([mode, query_name_dict[query_structure], metric]), metrics[query_structure][metric], step)
all_metrics["_".join([query_name_dict[query_structure], metric])] = metrics[query_structure][metric]
if metric != 'num_queries':
average_metrics[metric] += metrics[query_structure][metric]
num_queries += metrics[query_structure]['num_queries']
num_query_structures += 1
for metric in average_metrics:
average_metrics[metric] /= num_query_structures
writer.add_scalar("_".join([mode, 'average', metric]), average_metrics[metric], step)
all_metrics["_".join(["average", metric])] = average_metrics[metric]
log_metrics('%s average' % mode, step, average_metrics)
return all_metrics
def load_data(args, tasks):
logging.info("loading data")
train_queries = pickle.load(open(os.path.join(args.data_path, "train-queries.pkl"), 'rb'))
train_answers = pickle.load(open(os.path.join(args.data_path, "train-answers.pkl"), 'rb'))
valid_queries = pickle.load(open(os.path.join(args.data_path, "valid-queries.pkl"), 'rb'))
valid_hard_answers = pickle.load(open(os.path.join(args.data_path, "valid-hard-answers.pkl"), 'rb'))
valid_easy_answers = pickle.load(open(os.path.join(args.data_path, "valid-easy-answers.pkl"), 'rb'))
test_queries = pickle.load(open(os.path.join(args.data_path, "test-queries.pkl"), 'rb'))
test_hard_answers = pickle.load(open(os.path.join(args.data_path, "test-hard-answers.pkl"), 'rb'))
test_easy_answers = pickle.load(open(os.path.join(args.data_path, "test-easy-answers.pkl"), 'rb'))
for name in all_tasks:
if 'u' in name:
name, evaluate_union = name.split('-')
else:
evaluate_union = args.evaluate_union
if name not in tasks or evaluate_union != args.evaluate_union:
query_structure = name_query_dict[name if 'u' not in name else '-'.join([name, evaluate_union])]
if query_structure in train_queries:
del train_queries[query_structure]
if query_structure in valid_queries:
del valid_queries[query_structure]
if query_structure in test_queries:
del test_queries[query_structure]
return train_queries, train_answers, valid_queries, valid_hard_answers, valid_easy_answers, test_queries, test_hard_answers, test_easy_answers
def main(args):
set_global_seed(args.seed)
mat = None
if args.geo == 'ns':
base_data = Data(args.data_path)
mat = base_data.rel_mat
tasks = args.tasks.split('.')
for task in tasks:
if 'n' in task and args.geo in ['box', 'vec']:
assert False, "Q2B and GQE cannot handle queries with negation"
if args.lambdas:
lams = [float(x) for x in args.lambdas.split(';')]
assert(len(lams) == len(tasks))
args.lams = {name_query_dict[task if 'u' not in task else f'{task}-{args.evaluate_union}']: lams[i] for i, task in enumerate(tasks)}
if args.evaluate_union == 'DM':
assert args.geo == 'beta', "only BetaE supports modeling union using De Morgan's Laws"
cur_time = parse_time()
if args.prefix is None:
prefix = 'logs'
else:
prefix = args.prefix
print("overwritting args.save_path")
args.save_path = os.path.join(prefix, args.data_path.split('/')[-1], args.tasks, args.geo)
if args.geo in ['box']:
tmp_str = "g-{}-mode-{}".format(args.gamma, args.box_mode)
elif args.geo in ['vec']:
tmp_str = "g-{}".format(args.gamma)
elif args.geo == 'beta':
tmp_str = "g-{}-mode-{}".format(args.gamma, args.beta_mode)
elif args.geo == 'ns':
tmp_str = "g-{}-mode-{}".format(args.gamma, args.kge_mode)
if args.checkpoint_path is not None:
args.save_path = args.checkpoint_path
else:
args.save_path = os.path.join(args.save_path, tmp_str, cur_time)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
print("logging to", args.save_path)
if not args.do_train:
writer = SummaryWriter('./logs-debug/unused-tb')
else:
writer = SummaryWriter(args.save_path)
set_logger(args)
with open('%s/stats.txt' % args.data_path) as f:
entrel = f.readlines()
nentity = int(entrel[0].split(' ')[-1])
nrelation = int(entrel[1].split(' ')[-1])
args.nentity = nentity
args.nrelation = nrelation
logging.info('-------------------------------'*3)
logging.info('Geo: %s' % args.geo)
logging.info('Data Path: %s' % args.data_path)
logging.info('#entity: %d' % nentity)
logging.info('#relation: %d' % nrelation)
logging.info('#max steps: %d' % args.max_steps)
logging.info('Evaluate unoins using: %s' % args.evaluate_union)
train_queries, train_answers, valid_queries, valid_hard_answers, valid_easy_answers, test_queries, test_hard_answers, test_easy_answers = load_data(args, tasks)
logging.info("Training info:")
if args.do_train:
for query_structure in train_queries:
logging.info(query_name_dict[query_structure]+": "+str(len(train_queries[query_structure])))
train_path_queries = defaultdict(set)
train_other_queries = defaultdict(set)
path_list = ['1p', '2p', '3p']
for query_structure in train_queries:
if query_name_dict[query_structure] in path_list:
train_path_queries[query_structure] = train_queries[query_structure]
else:
train_other_queries[query_structure] = train_queries[query_structure]
train_path_queries = flatten_query(train_path_queries)
train_path_iterator = SingledirectionalOneShotIterator(DataLoader(
TrainDataset(train_path_queries, nentity, nrelation, args.negative_sample_size, train_answers),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.cpu_num,
collate_fn=TrainDataset.collate_fn
))
if len(train_other_queries) > 0:
train_other_queries = flatten_query(train_other_queries)
train_other_iterator = SingledirectionalOneShotIterator(DataLoader(
TrainDataset(train_other_queries, nentity, nrelation, args.negative_sample_size, train_answers),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.cpu_num,
collate_fn=TrainDataset.collate_fn
))
else:
train_other_iterator = None
logging.info("Validation info:")
if args.do_valid:
for query_structure in valid_queries:
logging.info(query_name_dict[query_structure]+": "+str(len(valid_queries[query_structure])))
valid_queries = flatten_query(valid_queries)
valid_dataloader = DataLoader(
TestDataset(
valid_queries,
args.nentity,
args.nrelation,
),
batch_size=args.test_batch_size,
num_workers=args.cpu_num,
collate_fn=TestDataset.collate_fn
)
logging.info("Test info:")
if args.do_test:
for query_structure in test_queries:
logging.info(query_name_dict[query_structure]+": "+str(len(test_queries[query_structure])))
test_queries = flatten_query(test_queries)
test_dataloader = DataLoader(
TestDataset(
test_queries,
args.nentity,
args.nrelation,
),
batch_size=args.test_batch_size,
num_workers=args.cpu_num,
collate_fn=TestDataset.collate_fn
)
model = KGReasoning(
nentity=nentity,
nrelation=nrelation,
hidden_dim=args.hidden_dim,
gamma=args.gamma,
geo=args.geo,
mode=args.kge_mode,
use_cuda=args.cuda,
box_mode=eval_tuple(args.box_mode),
beta_mode=eval_tuple(args.beta_mode),
test_batch_size=args.test_batch_size,
query_name_dict=query_name_dict,
mat=mat,
loss_weight=args.loss_weight,
args=args
)
logging.info('Model Parameter Configuration:')
num_params = 0
for name, param in model.named_parameters():
logging.info('Parameter %s: %s, require_grad = %s' % (name, str(param.size()), str(param.requires_grad)))
if param.requires_grad:
num_params += np.prod(param.size())
logging.info('Parameter Number: %d' % num_params)
if args.cuda:
model = model.cuda()
if args.KGE_pretrain:
pre = torch.load(os.path.join(args.data_path, 'KGEmodel', args.kge_mode+'.ckpt'))
pretrained_dict = {'embedding_range': pre['state_dict']['model.embedding_range'], 'entity_embedding': pre['state_dict']['model.ent_emb.weight'], 'relation_embedding': pre['state_dict']['model.rel_emb.weight']}
model_dict = model.state_dict()
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
if args.do_train:
current_learning_rate = args.learning_rate
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=current_learning_rate
)
warm_up_steps = args.warm_up_steps if args.warm_up_steps else (args.max_steps//10)
if args.checkpoint_path is not None:
logging.info('Loading checkpoint %s...' % args.checkpoint_path)
checkpoint = torch.load(os.path.join(args.checkpoint_path, 'checkpoint'))
init_step = checkpoint['step']
model.load_state_dict(checkpoint['model_state_dict'])
# if args.do_train:
# current_learning_rate = checkpoint['current_learning_rate']
# warm_up_steps = checkpoint['warm_up_steps']
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
else:
logging.info('Ramdomly Initializing %s Model...' % args.geo)
init_step = 0
step = init_step
if args.geo == 'box':
logging.info('box mode = %s' % args.box_mode)
elif args.geo == 'beta':
logging.info('beta mode = %s' % args.beta_mode)
elif args.geo == 'ns':
logging.info('kge mode = %s' % args.kge_mode)
logging.info('tasks = %s' % args.tasks)
logging.info('init_step = %d' % init_step)
if args.do_train:
logging.info('Start Training...')
logging.info('learning_rate = %.10f' % current_learning_rate)
logging.info('batch_size = %d' % args.batch_size)
logging.info('hidden_dim = %d' % args.hidden_dim)
logging.info('gamma = %f' % args.gamma)
if args.do_train:
training_logs = []
for step in range(init_step, args.max_steps):
if step == 2*args.max_steps//3:
args.valid_steps *= 4
with torch.autograd.set_detect_anomaly(True):
log = model.train_step(model, optimizer, train_path_iterator, args, step)
for metric in log:
writer.add_scalar('path_'+metric, log[metric], step)
if train_other_iterator is not None:
log = model.train_step(model, optimizer, train_other_iterator, args, step)
for metric in log:
writer.add_scalar('other_'+metric, log[metric], step)
log = model.train_step(model, optimizer, train_path_iterator, args, step)
training_logs.append(log)
if step >= warm_up_steps:
current_learning_rate = current_learning_rate / 2
logging.info('Change learning_rate to %.10f at step %d' % (current_learning_rate, step))
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=current_learning_rate
)
warm_up_steps += args.max_steps // 10
if step % args.save_checkpoint_steps == 0:
save_variable_list = {
'step': step,
'current_learning_rate': current_learning_rate,
'warm_up_steps': warm_up_steps
}
save_model(model, optimizer, save_variable_list, args, step)
if step % args.valid_steps == 0 and step > 0:
if args.do_valid:
logging.info('Evaluating on Valid Dataset...')
valid_all_metrics = evaluate(model, valid_easy_answers, valid_hard_answers, args, valid_dataloader, query_name_dict, 'Valid', step, writer)
if args.do_test:
logging.info('Evaluating on Test Dataset...')
test_all_metrics = evaluate(model, test_easy_answers, test_hard_answers, args, test_dataloader, query_name_dict, 'Test', step, writer)
if step % args.log_steps == 0:
metrics = {}
for metric in training_logs[0].keys():
metrics[metric] = sum([log[metric] for log in training_logs])/len(training_logs)
log_metrics('Training average', step, metrics)
training_logs = []
save_variable_list = {
'step': step,
'current_learning_rate': current_learning_rate,
'warm_up_steps': warm_up_steps
}
save_model(model, optimizer, save_variable_list, args, step)
try:
print(step)
except:
step = 0
if args.do_test:
logging.info('Evaluating on Test Dataset...')
test_all_metrics = evaluate(model, test_easy_answers, test_hard_answers, args, test_dataloader, query_name_dict, 'Test', step, writer)
logging.info("Training finished!!")
if __name__ == '__main__':
main(parse_args())