-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
181 lines (154 loc) · 7.73 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
from torch.utils.data import Dataset
import random
import os
from tqdm import tqdm
class VTKG(Dataset):
def __init__(self, data, logger, max_vis_len = -1):
self.data = data
self.logger = logger
self.dir = f"data/{data}/"
self.ent2id = {}
self.id2ent = []
self.rel2id = {}
self.id2rel = []
with open(self.dir + "entities.txt") as f:
for idx, line in enumerate(f.readlines()):
self.ent2id[line.strip()] = idx
self.id2ent.append(line.strip())
self.num_ent = len(self.ent2id)
with open(self.dir + "relations.txt") as f:
for idx, line in enumerate(f.readlines()):
self.rel2id[line.strip()] = idx
self.id2rel.append(line.strip())
self.num_rel = len(self.rel2id)
self.train = []
with open(self.dir + "train.txt") as f:
for line in f.readlines():
h,r,t = line.strip().split("\t")
self.train.append((self.ent2id[h], self.rel2id[r], self.ent2id[t]))
self.valid = []
with open(self.dir + "valid.txt") as f:
for line in f.readlines():
h,r,t = line.strip().split("\t")
self.valid.append((self.ent2id[h], self.rel2id[r], self.ent2id[t]))
self.test = []
with open(self.dir + "test.txt") as f:
for line in f.readlines():
h,r,t = line.strip().split("\t")
self.test.append((self.ent2id[h], self.rel2id[r], self.ent2id[t]))
self.filter_dict = {}
for data_split in [self.train, self.valid, self.test]:
for triplet in data_split:
h,r,t = triplet
if (-1, r, t) not in self.filter_dict:
self.filter_dict[(-1,r,t)] = []
self.filter_dict[(-1,r,t)].append(h)
if (h, r, -1) not in self.filter_dict:
self.filter_dict[(h,r,-1)] = []
self.filter_dict[(h,r,-1)].append(t)
self.max_vis_len_ent = max_vis_len
self.max_vis_len_rel = max_vis_len
# self.gather_vis_feature()
# self.gather_txt_feature()
def sort_vis_features(self, item = 'entity'):
if item == 'entity':
vis_feats = torch.load(self.dir + 'visual_features_ent.pt')
elif item == 'relation':
vis_feats = torch.load(self.dir + 'visual_features_rel.pt')
else:
raise NotImplementedError
sorted_vis_feats = {}
for obj in tqdm(vis_feats):
if item == 'entity' and obj not in self.ent2id:
continue
if item == 'relation' and obj not in self.rel2id:
continue
num_feats = len(vis_feats[obj])
sim_val = torch.zeros(num_feats).cuda()
iterate = tqdm(range(num_feats)) if num_feats > 1000 else range(num_feats)
cudaed_feats = vis_feats[obj].cuda()
for i in iterate:
sims = torch.inner(cudaed_feats[i], cudaed_feats[i:])
sim_val[i:] += sims
sim_val[i] += sims.sum()-torch.inner(cudaed_feats[i], cudaed_feats[i])
sorted_vis_feats[obj] = vis_feats[obj][torch.argsort(sim_val, descending = True)]
if item == 'entity':
torch.save(sorted_vis_feats, self.dir+ "visual_features_ent_sorted.pt")
else:
torch.save(sorted_vis_feats, self.dir+ "visual_features_rel_sorted.pt")
return sorted_vis_feats
def gather_vis_feature(self):
if os.path.isfile(self.dir + 'visual_features_ent_sorted.pt'):
self.logger.info("Found sorted entity visual features!")
self.ent2vis = torch.load(self.dir + 'visual_features_ent_sorted.pt')
elif os.path.isfile(self.dir + 'visual_features_ent.pt'):
self.logger.info("Entity visual features are not sorted! sorting...")
self.ent2vis = self.sort_vis_features(item = 'entity')
else:
self.logger.info("Entity visual features are not found!")
self.ent2vis = {}
if os.path.isfile(self.dir + 'visual_features_rel_sorted.pt'):
self.logger.info("Found sorted relation visual features!")
self.rel2vis = torch.load(self.dir + 'visual_features_rel_sorted.pt')
elif os.path.isfile(self.dir + 'visual_features_rel.pt'):
self.logger.info("Relation visual feature are not sorted! sorting...")
self.rel2vis = self.sort_vis_features(item = 'relation')
else:
self.logger.info("Relation visual features are not found!")
self.rel2vis = {}
self.vis_feat_size = len(self.ent2vis[list(self.ent2vis.keys())[0]][0])
total_num = 0
if self.max_vis_len_ent != -1:
for ent_name in self.ent2vis:
num_feats = len(self.ent2vis[ent_name])
total_num += num_feats
self.ent2vis[ent_name] = self.ent2vis[ent_name][:self.max_vis_len_ent]
for rel_name in self.rel2vis:
self.rel2vis[rel_name] = self.rel2vis[rel_name][:self.max_vis_len_rel]
else:
for ent_name in self.ent2vis:
num_feats = len(self.ent2vis[ent_name])
total_num += num_feats
if self.max_vis_len_ent < len(self.ent2vis[ent_name]):
self.max_vis_len_ent = len(self.ent2vis[ent_name])
self.max_vis_len_ent = max(self.max_vis_len_ent, 0)
for rel_name in self.rel2vis:
if self.max_vis_len_rel < len(self.rel2vis[rel_name]):
self.max_vis_len_rel = len(self.rel2vis[rel_name])
self.max_vis_len_rel = max(self.max_vis_len_rel, 0)
self.ent_vis_mask = torch.full((self.num_ent, self.max_vis_len_ent), True).cuda()
self.ent_vis_matrix = torch.zeros((self.num_ent, self.max_vis_len_ent, self.vis_feat_size)).cuda()
self.rel_vis_mask = torch.full((self.num_rel, self.max_vis_len_rel), True).cuda()
self.rel_vis_matrix = torch.zeros((self.num_rel, self.max_vis_len_rel, 3*self.vis_feat_size)).cuda()
for ent_name in self.ent2vis:
ent_id = self.ent2id[ent_name]
num_feats = len(self.ent2vis[ent_name])
self.ent_vis_mask[ent_id, :num_feats] = False
self.ent_vis_matrix[ent_id, :num_feats] = self.ent2vis[ent_name]
for rel_name in self.rel2vis:
rel_id = self.rel2id[rel_name]
num_feats = len(self.rel2vis[rel_name])
self.rel_vis_mask[rel_id, :num_feats] = False
self.rel_vis_matrix[rel_id, :num_feats] = self.rel2vis[rel_name]
def gather_txt_feature(self):
self.ent2txt = torch.load(self.dir + 'textual_features_ent.pt')
self.rel2txt = torch.load(self.dir + 'textual_features_rel.pt')
self.txt_feat_size = len(self.ent2txt[self.id2ent[0]])
self.ent_txt_matrix = torch.zeros((self.num_ent, self.txt_feat_size)).cuda()
self.rel_txt_matrix = torch.zeros((self.num_rel, self.txt_feat_size)).cuda()
for ent_name in self.ent2id:
self.ent_txt_matrix[self.ent2id[ent_name]] = self.ent2txt[ent_name]
for rel_name in self.rel2id:
self.rel_txt_matrix[self.rel2id[rel_name]] = self.rel2txt[rel_name]
def __len__(self):
return len(self.train)
def __getitem__(self, idx):
h,r,t = self.train[idx]
if random.random() < 0.5:
masked_triplet = [self.num_ent + self.num_rel, r + self.num_ent, t + self.num_rel]
label = h
else:
masked_triplet = [h + self.num_rel, r + self.num_ent, self.num_ent + self.num_rel]
label = t
return torch.tensor(masked_triplet), torch.tensor(label)