-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
219 lines (191 loc) · 8.07 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, List, Union, Tuple
from transformers import LlamaForCausalLM
class KnowledgePrompting(nn.Module):
def __init__(
self,
model: LlamaForCausalLM,
kge_model: str = "data/transe.pt",
pretrain_emb_path = None,
adapter_type = "mlp"
) -> None:
super(KnowledgePrompting, self).__init__()
self.llama_model = model
for param in self.llama_model.parameters():
param.requires_grad = False
pretrain_embeddings = torch.load(open(kge_model, "rb"))
if pretrain_emb_path is None:
self.embeddings = PretrainKGEmbedding(
pretrain_ent_embs=pretrain_embeddings,
dim_llm=4096,
adapter_type=adapter_type
)
else:
print("Adapter Load From {}".format(pretrain_emb_path))
self.embeddings = torch.load(pretrain_emb_path)
print(self.embeddings)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
embedding_ids: torch.LongTensor = None
):
kg_embeds = self.embeddings(embedding_ids)
batch_size, seq_len, _ = kg_embeds.shape
token_embeds = self.llama_model.model.embed_tokens(input_ids)
input_embeds = torch.cat((kg_embeds, token_embeds), dim=1)
prefix_labels = torch.full((batch_size, seq_len), fill_value=-100, dtype=torch.long)
new_labels = torch.cat((prefix_labels.cuda(), labels), dim=-1)
return self.llama_model(
input_ids=None,
attention_mask=None,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=input_embeds,
labels=new_labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class PretrainKGEmbedding(nn.Module):
def __init__(
self,
pretrain_ent_embs,
dim_llm,
num_prefix = 1,
adapter_type = "mlp"
):
super(PretrainKGEmbedding, self).__init__()
self.num_prefix = num_prefix
self.llm_dim = dim_llm
self.emb_dim = num_prefix * dim_llm
self.embeddings = nn.Embedding.from_pretrained(pretrain_ent_embs)
self.pretrain_dim = self.embeddings.weight.shape[1]
# Froze the pretrain embeddings
self.embeddings.requires_grad_(False)
self.adapter_type = adapter_type
if adapter_type == "fc":
self.adapter = nn.Linear(self.pretrain_dim, self.emb_dim)
elif adapter_type == "mlp":
self.adapter = nn.Sequential(
nn.Linear(self.pretrain_dim, 3 * self.emb_dim),
nn.ReLU(),
nn.Linear(3 * self.emb_dim, self.emb_dim)
)
elif adapter_type == "moe":
self.adapter = MoEAdaptorLayer(layers=[self.pretrain_dim, self.emb_dim])
elif adapter_type == "qformer":
self.adapter = QFormer(self.pretrain_dim, self.emb_dim)
elif "mlp_" in adapter_type:
# The scalability
num_layers = int(adapter_type.split('_')[-1])
self.adapter = nn.Sequential(
nn.Linear(self.pretrain_dim, 3 * self.emb_dim),
nn.ReLU(),
)
for _ in range(num_layers - 2):
self.adapter.append(nn.Linear(3 * self.emb_dim, 3 * self.emb_dim))
self.adapter.append(nn.ReLU())
self.adapter.append(nn.Linear(3 * self.emb_dim, self.emb_dim))
elif "res_" in adapter_type:
pass
else:
raise NotImplementedError
def forward(self, triple_ids):
# main training stage
batch_size = triple_ids.shape[0]
num_token = triple_ids.shape[1]
ent = triple_ids.reshape(-1, num_token)
with torch.no_grad():
emb = self.embeddings(ent)
prefix = self.adapter(emb).reshape(batch_size, -1, self.llm_dim)
# print(prefix.shape)
return prefix
class PWLayer(nn.Module):
"""Single Parametric Whitening Layer
"""
def __init__(self, input_size, output_size, dropout=0.0):
super(PWLayer, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.bias = nn.Parameter(torch.zeros(input_size), requires_grad=True)
self.lin = nn.Linear(input_size, output_size, bias=False)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, x):
return self.lin(self.dropout(x) - self.bias)
class MoEAdaptorLayer(nn.Module):
"""MoE-enhanced Adaptor
"""
def __init__(self, n_exps=4, layers=[512, 4096], dropout=0.2, noise=True):
super(MoEAdaptorLayer, self).__init__()
self.n_exps = n_exps
self.noisy_gating = noise
self.experts = nn.ModuleList([PWLayer(layers[0], layers[1], dropout) for i in range(n_exps)])
self.w_gate = nn.Parameter(torch.zeros(layers[0], n_exps), requires_grad=True)
self.w_noise = nn.Parameter(torch.zeros(layers[0], n_exps), requires_grad=True)
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
clean_logits = x @ self.w_gate
if self.noisy_gating and train:
raw_noise_stddev = x @ self.w_noise
noise_stddev = ((F.softplus(raw_noise_stddev) + noise_epsilon))
noisy_logits = clean_logits + (torch.randn_like(clean_logits).to(x.device) * noise_stddev)
logits = noisy_logits
else:
logits = clean_logits
gates = F.softmax(logits, dim=-1)
return gates
def forward(self, x):
gates = self.noisy_top_k_gating(x, self.training) # (B, n_E)
expert_outputs = [self.experts[i](x).unsqueeze(-2) for i in range(self.n_exps)] # [(B, 1, D)]
expert_outputs = torch.cat(expert_outputs, dim=-2)
multiple_outputs = gates.unsqueeze(-1) * expert_outputs
return multiple_outputs.sum(dim=-2)
class QFormer(nn.Module):
def __init__(self, hidden_dim, query_dim, num_queries=4, num_heads=1, num_layers=1):
super(QFormer, self).__init__()
# 查询向量的嵌入
self.query_embeddings = nn.Parameter(torch.randn(num_queries, hidden_dim))
# Query Transformer
self.query_self_attention = nn.MultiheadAttention(
embed_dim=hidden_dim,
num_heads=num_heads,
batch_first=True
)
# Cross-Attention
self.cross_attention = nn.MultiheadAttention(
embed_dim=hidden_dim,
num_heads=num_heads,
batch_first=True
)
self.feed_forward = nn.Sequential(
nn.Linear(hidden_dim, 3 * hidden_dim),
nn.ReLU(),
nn.Dropout(),
nn.Linear(3 * hidden_dim, hidden_dim)
)
self.layer_norm = nn.LayerNorm(hidden_dim)
self.fc_out = nn.Linear(hidden_dim, query_dim)
def forward(self, x):
queries = self.query_embeddings.unsqueeze(0).repeat(x.size(0), 1, 1)
query_output, _ = self.query_self_attention(queries, queries, queries)
cross_attention_output, _ = self.cross_attention(query_output, x, x)
output = self.feed_forward(cross_attention_output) + cross_attention_output
output = self.fc_out(self.layer_norm(output))
return output
if __name__ == "__main__":
qformer = QFormer(hidden_dim=512, query_dim=4096)
input = torch.randn((16, 1, 512))
print(qformer(input).shape)