-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbreezeboxshadowhelper.cpp
290 lines (242 loc) · 9.71 KB
/
breezeboxshadowhelper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
* Copyright (C) 2018 Vlad Zagorodniy <[email protected]>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License or (at your option) version 3 or any later version
* accepted by the membership of KDE e.V. (or its successor approved
* by the membership of KDE e.V.), which shall act as a proxy
* defined in Section 14 of version 3 of the license.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "breezeboxshadowhelper.h"
//#include "config-breezecommon.h"
#include <QVector>
#include <fftw3.h>
#include <cmath>
#define BREEZE_COMMON_USE_KDE4 0
namespace Breeze {
namespace BoxShadowHelper {
namespace {
// FFT approach outperforms naive blur method when blur radius >= 64.
// (was discovered after doing a lot of benchmarks)
const int FFT_BLUR_RADIUS_THRESHOLD = 64;
// According to the CSS Level 3 spec, standard deviation must be equal to
// half of the blur radius. https://www.w3.org/TR/css-backgrounds-3/#shadow-blur
// Current window size is too small for sigma equal to half of the blur radius.
// As a workaround, sigma blur scale is lowered. With the lowered sigma
// blur scale, area under the kernel equals to 0.98, which is pretty enough.
// Maybe, it should be changed in the future.
const double SIGMA_BLUR_SCALE = 0.4375;
}
inline int kernelSizeToRadius(int kernelSize)
{
return (kernelSize - 1) / 2;
}
inline int radiusToKernelSize(int radius)
{
return radius * 2 + 1;
}
QVector<double> computeGaussianKernel(int radius)
{
QVector<double> kernel;
const int kernelSize = radiusToKernelSize(radius);
kernel.reserve(kernelSize);
const double sigma = SIGMA_BLUR_SCALE * radius;
const double den = std::sqrt(2.0) * sigma;
double kernelNorm = 0.0;
double lastInt = 0.5 * std::erf((-radius - 0.5) / den);
for (int i = 0; i < kernelSize; i++) {
const double currInt = 0.5 * std::erf((i - radius + 0.5) / den);
const double w = currInt - lastInt;
kernel << w;
kernelNorm += w;
lastInt = currInt;
}
for (auto &w : kernel) {
w /= kernelNorm;
}
return kernel;
}
// Do horizontal pass of the Gaussian filter. Please notice that the result
// is transposed. So, the dst image should have proper size, e.g. if the src
// image have (wxh) size then the dst image should have (hxw) size. The
// result is transposed so we read memory in linear order.
void blurAlphaNaivePass(const QImage &src, QImage &dst, const QVector<double> &kernel)
{
const int alphaOffset = QSysInfo::ByteOrder == QSysInfo::BigEndian ? 0 : 3;
const int alphaStride = src.depth() >> 3;
const int radius = kernelSizeToRadius(kernel.size());
for (int y = 0; y < src.height(); y++) {
const uchar *in = src.scanLine(y) + alphaOffset;
uchar *out = dst.scanLine(0) + alphaOffset + y * alphaStride;
for (int x = 0; x < radius; x++) {
const uchar *window = in;
double alpha = 0.0;
for (int k = radius - x; k < kernel.size(); k++) {
alpha += *window * kernel[k];
window += alphaStride;
}
*out = static_cast<uchar>(alpha);
out += dst.width() * alphaStride;
}
for (int x = radius; x < src.width() - radius; x++) {
const uchar *window = in + (x - radius) * alphaStride;
double alpha = 0.0;
for (int k = 0; k < kernel.size(); k++) {
alpha += *window * kernel[k];
window += alphaStride;
}
*out = static_cast<uchar>(alpha);
out += dst.width() * alphaStride;
}
for (int x = src.width() - radius; x < src.width(); x++) {
const uchar *window = in + (x - radius - 1) * alphaStride;
double alpha = 0.0;
const int outside = x + radius - src.width();
for (int k = 0; k < kernel.size() - outside; k++) {
alpha += *window * kernel[k];
window += alphaStride;
}
*out = static_cast<uchar>(alpha);
out += dst.width() * alphaStride;
}
}
}
// Blur alpha channel of the given image using separable convolution
// gaussian kernel. Not very efficient with big blur radii.
void blurAlphaNaive(QImage &img, int radius)
{
const QVector<double> kernel = computeGaussianKernel(radius);
QImage tmp(img.height(), img.width(), img.format());
blurAlphaNaivePass(img, tmp, kernel); // horizontal pass
blurAlphaNaivePass(tmp, img, kernel); // vertical pass
}
// Blur alpha channel of the given image using Fourier Transform.
// It's somewhat efficient with big blur radii.
//
// It works as follows:
// - do FFT on given input image(it is expected, that the
// input image was padded before)
// - compute Gaussian kernel, pad it to the size of the input
// image, and do FFT on it
// - multiply the two in the frequency domain(element-wise)
// - transform the result back to "time domain"
//
void blurAlphaFFT(QImage &img, int radius)
{
const int alphaOffset = QSysInfo::ByteOrder == QSysInfo::BigEndian ? 0 : 3;
const int alphaStride = img.depth() >> 3;
const int size = img.width() * img.height();
// Use FFTW's malloc function so the returned pointer obeys any
// special alignment restrictions. (e.g. for SIMD acceleration, etc)
// See http://www.fftw.org/fftw3_doc/MekernelSizeToRadius(mory-Allocation.html
fftw_complex *imageIn = fftw_alloc_complex(size);
fftw_complex *imageOut = fftw_alloc_complex(size);
uchar *data = img.scanLine(0) + alphaOffset;
for (int i = 0; i < size; i++) {
imageIn[i][0] = *data;
imageIn[i][1] = 0.0;
data += alphaStride;
}
fftw_plan imageFFT = fftw_plan_dft_2d(
img.height(), img.width(),
imageIn, imageOut,
FFTW_FORWARD, FFTW_ESTIMATE);
fftw_plan imageIFFT = fftw_plan_dft_2d(
img.height(), img.width(),
imageOut, imageIn,
FFTW_BACKWARD, FFTW_ESTIMATE);
// The computed Gaussian kernel has to have the same size as the input image.
// Please note that the center of the computed Gaussian kernel is placed
// at the top-left corner and the whole kernel is wrapped around so we read
// result in linear order.
// Note: the kernel is computed by taking a product of two 1-D Gaussian kernels.
QVector<double> kernel(size, 0);
const QVector<double> kernel_ = computeGaussianKernel(radius);
for (int y = 0; y < kernel_.size(); y++) {
const int i = (img.height() + y - radius) % img.height();
for (int x = 0; x < kernel_.size(); x++) {
const int j = (img.width() + x - radius) % img.width();
kernel[j + i * img.width()] = kernel_[x] * kernel_[y];
}
}
fftw_complex *kernelIn = fftw_alloc_complex(kernel.size());
fftw_complex *kernelOut = fftw_alloc_complex(kernel.size());
for (int i = 0; i < size; i++) {
kernelIn[i][0] = kernel[i];
kernelIn[i][1] = 0.0;
}
fftw_plan kernelFFT = fftw_plan_dft_2d(
img.height(), img.width(),
kernelIn, kernelOut,
FFTW_FORWARD, FFTW_ESTIMATE);
// Do actual FFT.
fftw_execute(imageFFT);
fftw_execute(kernelFFT);
for (int i = 0; i < size; i++) {
const double re = imageOut[i][0] * kernelOut[i][0] - imageOut[i][1] * kernelOut[i][1];
const double im = imageOut[i][0] * kernelOut[i][1] + imageOut[i][1] * kernelOut[i][0];
imageOut[i][0] = re;
imageOut[i][1] = im;
}
fftw_execute(imageIFFT);
// Copy result back. Please note, result is scaled by `width x height` so we need to scale it down.
const double invSize = 1.0 / size;
data = img.scanLine(0) + alphaOffset;
for (int i = 0; i < size; i++) {
*data = imageIn[i][0] * invSize;
data += alphaStride;
}
fftw_destroy_plan(kernelFFT);
fftw_destroy_plan(imageFFT);
fftw_destroy_plan(imageIFFT);
fftw_free(kernelIn);
fftw_free(kernelOut);
fftw_free(imageIn);
fftw_free(imageOut);
}
void boxShadow(QPainter *p, const QRect &box, const QPoint &offset, int radius, const QColor &color)
{
const QSize size = box.size() + 2 * QSize(radius, radius);
#if BREEZE_COMMON_USE_KDE4
const qreal dpr = 1.0;
#else
const qreal dpr = p->device()->devicePixelRatioF();
#endif
QPainter painter;
QImage shadow(size * dpr, QImage::Format_ARGB32_Premultiplied);
#if !BREEZE_COMMON_USE_KDE4
shadow.setDevicePixelRatio(dpr);
#endif
shadow.fill(Qt::transparent);
painter.begin(&shadow);
painter.fillRect(QRect(QPoint(radius, radius), box.size()), Qt::black);
painter.end();
// There is no need to blur RGB channels. Blur the alpha
// channel and then give the shadow a tint of the desired color.
const int radius_ = radius * dpr;
if (radius_ < FFT_BLUR_RADIUS_THRESHOLD) {
blurAlphaNaive(shadow, radius_);
} else {
blurAlphaFFT(shadow, radius_);
}
painter.begin(&shadow);
painter.setCompositionMode(QPainter::CompositionMode_SourceIn);
painter.fillRect(shadow.rect(), color);
painter.end();
QRect shadowRect = shadow.rect();
shadowRect.setSize(shadowRect.size() / dpr);
shadowRect.moveCenter(box.center() + offset);
p->drawImage(shadowRect, shadow);
}
} // BoxShadowHelper
} // Breeze