forked from jbdj-star/st
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusionconv.py
65 lines (54 loc) · 1.92 KB
/
diffusionconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
class DiffusionConv(GraphConv):
"""
**Input**
- Node features of shape `([batch], N, F)`;
- Normalized adjacency
**Output**
- Node features with the same shape as the input, but with the last
dimension changed to `channels`.
"""
def __init__(
self,
channels: int,
num_diffusion_steps: int = 6,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
activation='relu',
** kwargs
):
super().__init__(channels,
activation=activation,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer,
kernel_constraint=kernel_constraint,
**kwargs)
assert channels > 0
self.Q = channels
# number of diffusion steps
self.K = num_diffusion_steps + 1
def build(self, input_shape):
X_shape, A_shape = input_shape
self.filters = []
for _ in range(self.Q):
layer = DiffuseFeatures(
num_diffusion_steps=self.K,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer,
kernel_constraint=self.kernel_constraint,
)
self.filters.append(layer)
def apply_filters(self, X, A):
diffused_features = []
for diffusion in self.filters:
diffused_feature = diffusion((X, A))
diffused_features.append(diffused_feature)
H = tf.concat(diffused_features, -1)
return H
def call(self, inputs):
# Get graph signal X and adjacency tensor A
X, A = inputs
H = self.apply_filters(X, A)
H = self.activation(H)
return H