forked from jbdj-star/st
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflowdatacheck.py
174 lines (153 loc) · 5.56 KB
/
flowdatacheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import pickle
import json
import file_loader
import numpy as np
import pickle
import json
len_closeness = 3
len_period = 2
len_trend = 1
config_path="data_bike.json"
config = json.load(open(config_path, "r"))
# how many timeslots per day (48 here)
timeslot_daynum = int(86400 / config["timeslot_sec"])
threshold = int(config["threshold"])
isFlowLoaded = False
isVolumeLoaded = False
def load_flow():
flow_train = np.load(open(config["flow_train"], "rb"))["flow"] / config["flow_train_max"]
flow_test = np.load(open(config["flow_test"], "rb"))["flow"] / config["flow_train_max"]
isFlowLoaded = True
return flow_train, flow_test
def load_volume():
volume_train = np.load(open(config["volume_train"], "rb"))["volume"] / config["volume_train_max"]
volume_test = np.load(open(config["volume_test"], "rb"))["volume"] / config["volume_train_max"]
isVolumeLoaded = True
return volume_train, volume_test
#a, b = load_flow()
train_data, test_data = load_volume()
train_data = np.transpose(train_data, (0, 3, 1, 2))
test_data = np.transpose(test_data, (0, 3, 1, 2))
def check_it(depends):
for d in depends:
if d < 0:
return False
return True
def create_dataset_train(T=48, len_closeness=len_closeness, len_trend=len_trend, TrendInterval=7, len_period=len_period, PeriodInterval=1):
"""current version
"""
# offset_week = pd.DateOffset(days=7)
#offset_frame = pd.DateOffset(minutes=24 * 60 // self.T)
XC = []
XP = []
XT = []
Y = []
timestamps_Y = []
depends = [range(1, len_closeness + 1), [PeriodInterval * T * j for j in range(1, len_period + 1)], [TrendInterval * T * j for j in range(1, len_trend + 1)]]
i = max(T * TrendInterval * len_trend, T * PeriodInterval * len_period, len_closeness)
while i < 1920:#训练集长度1920个实例
Flag = True
for depend in depends:
if Flag is False:
break
Flag = check_it([i - j for j in depend])
if Flag is False:
i += 1
continue
x_c = [train_data[i - j] for j in depends[0]]
x_p = [train_data[i - j] for j in depends[1]]
x_t = [train_data[i - j] for j in depends[2]]
y = train_data[i]
if len_closeness > 0:
XC.append(np.vstack(x_c))
if len_period > 0:
XP.append(np.vstack(x_p))
if len_trend > 0:
XT.append(np.vstack(x_t))
Y.append(y)
#timestamps_Y.append(timestamps[i])
i += 1
XC = np.asarray(XC)
XP = np.asarray(XP)
XT = np.asarray(XT)
Y = np.asarray(Y)
print("XC shape: ", XC.shape, "XP shape: ", XP.shape, "XT shape: ", XT.shape, "Y shape:", Y.shape)
return XC, XP, XT, Y, timestamps_Y
def create_dataset_test( T=48, len_closeness=len_closeness, len_trend=len_trend, TrendInterval=7, len_period=len_period, PeriodInterval=1):
"""current version
"""
# offset_week = pd.DateOffset(days=7)
#offset_frame = pd.DateOffset(minutes=24 * 60 // self.T)
XC = []
XP = []
XT = []
Y = []
timestamps_Y = []
depends = [range(1, len_closeness + 1),
[PeriodInterval * T * j for j in range(1, len_period + 1)],
[TrendInterval * T * j for j in range(1, len_trend + 1)]]
i = max(T * TrendInterval * len_trend, T * PeriodInterval * len_period, len_closeness)
while i < 960:#训练集长度1920个实例
Flag = True
for depend in depends:
if Flag is False:
break
Flag = check_it([i - j for j in depend])
if Flag is False:
i += 1
continue
x_c = [test_data[i - j] for j in depends[0]]
x_p = [test_data[i - j] for j in depends[1]]
x_t = [test_data[i - j] for j in depends[2]]
y = test_data[i]
if len_closeness > 0:
XC.append(np.vstack(x_c))
if len_period > 0:
XP.append(np.vstack(x_p))
if len_trend > 0:
XT.append(np.vstack(x_t))
Y.append(y)
#timestamps_Y.append(timestamps[i])
i += 1
XC = np.asarray(XC)
XP = np.asarray(XP)
XT = np.asarray(XT)
Y = np.asarray(Y)
print("XC shape: ", XC.shape, "XP shape: ", XP.shape, "XT shape: ", XT.shape, "Y shape:", Y.shape)
return XC, XP, XT, Y, timestamps_Y
train_XC, train_XP, train_XT, train_Y, train_timestamps_Y = create_dataset_train(len_closeness=len_closeness, len_period=len_period,
len_trend=len_trend)
test_XC, test_XP, test_XT, test_Y, test_timestamps_Y = create_dataset_test(len_closeness=len_closeness, len_period=len_period,
len_trend=len_trend)
XC_train = []
XP_train = []
XT_train = []
Y_train = []
XC_test = []
XP_test = []
XT_test = []
Y_test = []
XC_train.append(train_XC)
XP_train.append(train_XP)
XT_train.append(train_XT)
Y_train.append(train_Y)
XC_train = np.vstack(XC_train)
XP_train = np.vstack(XP_train)
XT_train = np.vstack(XT_train)
Y_train = np.vstack(Y_train)
XC_test.append(test_XC)
XP_test.append(test_XP)
XT_test.append(test_XT)
Y_test.append(test_Y)
XC_test = np.vstack(XC_test)
XP_test = np.vstack(XP_test)
XT_test = np.vstack(XT_test)
Y_test = np.vstack(Y_test)
X_train = []
X_test = []
for X_ in [XC_train, XP_train, XT_train]:
X_train.append(X_)
for X_ in [XC_test, XP_test, XT_test]:
X_test.append(X_)
#print('finish')