-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbatch_box2img.py
51 lines (42 loc) · 1.4 KB
/
batch_box2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
from multiprocessing import Pool,Manager
import numpy as np
from skimage import io
from rplan.floorplan import Floorplan
from rplan.align import align_fp_gt
from rplan.utils import get_edges,savepkl,savemat,loadpkl
from tqdm.auto import tqdm
img_dir = './data'
img_aligned_dir = './data_aligned'
def boxes2img(boxes, types, order):
img = np.full((256,256),13,dtype=np.uint8)
boxes = boxes[order]
types = types[order]
for (x0,y0,x1,y1),t in zip(boxes,types):
img[y0:y1,x0:x1]=t
return img
def func(data):
inside = io.imread(f'{img_dir}/{data["name"]}.png')[...,-1]
img = boxes2img(data['boxes_aligned'],data['types'],data['order'])
img[inside==0]=13
io.imsave(f'{img_aligned_dir}/{data["name"]}.png',img)
return 1
class Callback():
def __init__(self,length):
self.bar = tqdm(total=length)
self.output = []
def update(self, ret):
self.bar.update(1)
def close(self):
self.bar.close()
if __name__ == '__main__':
data_pkl = loadpkl('./output/data_aligned.pkl')
print(len(data_pkl))
with Manager() as manager:
with Pool(32) as pool:
cb = Callback(len(data_pkl))
[pool.apply_async(func,args=(data,),callback=cb.update) for data in data_pkl]
#[cb.update(func(i)) for i in ids]
pool.close()
pool.join()
cb.close()