-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #84 from Yonv1943/add-buffer-for-L2O-Hterm-TNCO
✨ add buffer for L2O Hterm TNCO
- Loading branch information
Showing
4 changed files
with
589 additions
and
232 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,335 @@ | ||
import sys | ||
import time | ||
import torch as th | ||
import torch.nn as nn | ||
|
||
TEN = th.Tensor | ||
|
||
"""Learn To Optimize + Hamilton Term""" | ||
|
||
|
||
class ObjectiveTask: | ||
def __init__(self, *args): | ||
self.args = None | ||
|
||
def get_args_for_train(self): | ||
return self.args | ||
|
||
def get_args_for_eval(self): | ||
return self.args | ||
|
||
@staticmethod | ||
def get_objective(*args) -> TEN: | ||
return th.zeros() | ||
|
||
|
||
class OptimizerTask(nn.Module): | ||
def __init__(self, dim, device): | ||
super().__init__() | ||
self.dim = dim | ||
self.device = device | ||
|
||
self.register_buffer('theta', th.zeros(self.dim, requires_grad=True, device=device)) | ||
|
||
def re_init(self): | ||
self.__init__(dim=self.dim, device=self.device) | ||
|
||
def get_register_params(self): | ||
return [('theta', self.theta)] | ||
|
||
def get_output(self): | ||
return self.theta | ||
|
||
|
||
class OptimizerOpti(nn.Module): | ||
def __init__(self, hid_dim=20): | ||
super().__init__() | ||
self.hid_dim = hid_dim | ||
self.recurs1 = nn.LSTMCell(1, hid_dim) | ||
self.recurs2 = nn.LSTMCell(hid_dim, hid_dim) | ||
self.output = nn.Linear(hid_dim, 1) | ||
|
||
def forward(self, inp0, hid0, cell): | ||
hid1, cell1 = self.recurs1(inp0, (hid0[0], cell[0])) | ||
hid2, cell2 = self.recurs2(hid1, (hid0[1], cell[1])) | ||
return self.output(hid2), (hid1, hid2), (cell1, cell2) | ||
|
||
|
||
def set_attr(obj, attr, val): | ||
attrs = attr.split('.') | ||
for attr in attrs[:-1]: | ||
obj = getattr(obj, attr) | ||
setattr(obj, attrs[-1], val) | ||
|
||
|
||
def opt_train( | ||
obj_task: ObjectiveTask, | ||
opt_opti: OptimizerOpti, | ||
opt_task: OptimizerTask, | ||
opt_base: th.optim, | ||
num_opt: int, | ||
unroll: int, | ||
device: th.device, | ||
): | ||
opt_opti.train() | ||
opt_task.zero_grad() | ||
|
||
obj_args = obj_task.get_args_for_train() | ||
|
||
n_params = 0 | ||
for name, p in opt_task.get_register_params(): | ||
n_params += th.tensor(p.shape).prod().item() | ||
hc_state1 = th.zeros(4, n_params, opt_opti.hid_dim, device=device) | ||
|
||
all_losses_ever = [] | ||
all_losses = None | ||
|
||
th.set_grad_enabled(True) | ||
for iteration in range(1, num_opt + 1): | ||
output = opt_task.get_output() | ||
loss = obj_task.get_objective(output, *obj_args) | ||
loss.backward(retain_graph=True) | ||
|
||
if all_losses is None: | ||
all_losses = loss | ||
else: | ||
all_losses += loss | ||
all_losses_ever.append(loss.data.cpu().numpy()) | ||
|
||
i = 0 | ||
result_params = {} | ||
hc_state2 = th.zeros(4, n_params, opt_opti.hid_dim, device=device) | ||
for name, p in opt_task.get_register_params(): | ||
hid_dim = th.tensor(p.shape).prod().item() | ||
gradients = p.grad.view(hid_dim, 1).detach().clone().requires_grad_(True) | ||
|
||
j = i + hid_dim | ||
hc_part = hc_state1[:, i:j] | ||
updates, new_hidden, new_cell = opt_opti(gradients, hc_part[0:2], hc_part[2:4]) | ||
|
||
hc_state2[0, i:j] = new_hidden[0] | ||
hc_state2[1, i:j] = new_hidden[1] | ||
hc_state2[2, i:j] = new_cell[0] | ||
hc_state2[3, i:j] = new_cell[1] | ||
|
||
result = p + updates.view(*p.size()) | ||
result_params[name] = result / result.norm() | ||
result_params[name].retain_grad() | ||
|
||
i = j | ||
|
||
if iteration % unroll == 0: | ||
opt_base.zero_grad() | ||
all_losses.backward() | ||
opt_base.step() | ||
|
||
all_losses = None | ||
|
||
opt_task.re_init() | ||
opt_task.load_state_dict(result_params) | ||
opt_task.zero_grad() | ||
|
||
hc_state1 = hc_state2.detach().clone().requires_grad_(True) | ||
|
||
else: | ||
for name, p in opt_task.get_register_params(): | ||
set_attr(opt_task, name, result_params[name]) | ||
|
||
hc_state1 = hc_state2 | ||
th.set_grad_enabled(False) | ||
return all_losses_ever | ||
|
||
|
||
def opt_eval( | ||
obj_task: ObjectiveTask, | ||
opt_opti: OptimizerOpti, | ||
opt_task: OptimizerTask, | ||
num_opt: int, | ||
device: th.device | ||
): | ||
opt_opti.eval() | ||
|
||
obj_args = obj_task.get_args_for_eval() | ||
|
||
n_params = 0 | ||
for name, p in opt_task.get_register_params(): | ||
n_params += th.tensor(p.shape).prod().item() | ||
hc_state1 = th.zeros(4, n_params, opt_opti.hid_dim, device=device) | ||
|
||
best_res = None | ||
min_loss = th.inf | ||
|
||
th.set_grad_enabled(True) | ||
for _ in range(num_opt): | ||
output = opt_task.get_output() | ||
loss = obj_task.get_objective(output, *obj_args) | ||
loss.backward(retain_graph=True) | ||
|
||
result_params = {} | ||
hc_state2 = th.zeros(4, n_params, opt_opti.hid_dim, device=device) | ||
|
||
i = 0 | ||
for name, p in opt_task.get_register_params(): | ||
param_dim = th.tensor(p.shape).prod().item() | ||
gradients = p.grad.view(param_dim, 1).detach().clone().requires_grad_(True) | ||
|
||
j = i + param_dim | ||
hc_part = hc_state1[:, i:j] | ||
updates, new_hidden, new_cell = opt_opti(gradients, hc_part[0:2], hc_part[2:4]) | ||
|
||
hc_state2[0, i:j] = new_hidden[0] | ||
hc_state2[1, i:j] = new_hidden[1] | ||
hc_state2[2, i:j] = new_cell[0] | ||
hc_state2[3, i:j] = new_cell[1] | ||
|
||
result = p + updates.view(*p.size()) | ||
result_params[name] = result / result.norm() | ||
|
||
i = j | ||
|
||
opt_task.re_init() | ||
opt_task.load_state_dict(result_params) | ||
opt_task.zero_grad() | ||
|
||
hc_state1 = hc_state2.detach().clone().requires_grad_(True) | ||
|
||
if loss < min_loss: | ||
best_res = opt_task.get_output() | ||
min_loss = loss | ||
th.set_grad_enabled(False) | ||
return best_res, min_loss | ||
|
||
|
||
"""run""" | ||
|
||
|
||
class ObjectiveMISO(ObjectiveTask): | ||
def __init__(self, dim, device): | ||
super(ObjectiveMISO, self).__init__() | ||
self.dim = dim | ||
self.device = device | ||
|
||
self.args = None | ||
|
||
h_evals = self.load_from_disk(device) | ||
self.h_evals = h_evals | ||
self.p_evals = [1, 10, 100] | ||
|
||
loss_mmse_list = [] | ||
for p_eval in self.p_evals: | ||
loss_mmse = [] | ||
for h in h_evals: | ||
h_scale = h * (p_eval ** 0.5) | ||
w_mmse = self.get_result_of_compare_method(h, p_eval) | ||
loss_mmse.append(-self.get_objective(w_mmse, h_scale).item()) | ||
loss_mmse = sum(loss_mmse) / len(loss_mmse) | ||
loss_mmse_list.append(loss_mmse) | ||
print(f"{'MMSE':>8} {loss_mmse_list[0]:>9.3f} {loss_mmse_list[1]:>9.3f} {loss_mmse_list[2]:>9.3f}") | ||
|
||
def get_args_for_train(self): | ||
p = 10 ** (th.rand(1).item() + 1) | ||
h_scale = (p ** 0.5) * th.randn(self.dim, dtype=th.float32, device=self.device) | ||
args = (h_scale,) | ||
return args | ||
|
||
def get_args_for_eval(self): | ||
return self.args | ||
|
||
@staticmethod | ||
def get_objective(w: TEN, h: TEN, noise: float = 1.) -> TEN: | ||
w = w[0] + 1j * w[1] | ||
h = h[0] + 1j * h[1] | ||
|
||
hw = h @ w | ||
abs_hw_squared = th.abs(hw) ** 2 | ||
signal = th.diagonal(abs_hw_squared) | ||
interference = abs_hw_squared.sum(dim=-1) - signal | ||
sinr = signal / (interference + noise) | ||
return -th.log2(1 + sinr).sum() | ||
|
||
@staticmethod | ||
def load_from_disk(device): | ||
import pickle | ||
with open(f'./K8N8Samples=100.pkl', 'rb') as f: | ||
h_evals = th.as_tensor(pickle.load(f), dtype=th.cfloat, device=device) | ||
assert h_evals.shape == (100, 8, 8) | ||
|
||
h_evals = th.stack((h_evals.real, h_evals.imag), dim=1) | ||
assert h_evals.shape == (100, 2, 8, 8) | ||
return h_evals | ||
|
||
@staticmethod | ||
def get_result_of_compare_method(h, p) -> TEN: # MMSE beamformer | ||
h = h[0] + 1j * h[1] | ||
k, n = h.shape | ||
eye_mat = th.eye(n, dtype=h.dtype, device=h.device) | ||
w = th.linalg.solve(eye_mat * k / p + th.conj(th.transpose(h, 0, 1)) @ h, th.conj(th.transpose(h, 0, 1))) | ||
w = w / (th.norm(w, dim=0, keepdim=True) * k ** 0.5) # w.shape == [K, N] | ||
return th.stack((w.real, w.imag), dim=0) # return.shape == [2, K, N] | ||
|
||
|
||
def train_optimizer(): | ||
gpu_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0 | ||
|
||
'''init''' | ||
dim = 2, 8, 8 | ||
|
||
'''train''' | ||
train_times = 1000 | ||
lr = 1e-3 | ||
unroll = 16 # step of Hamilton Term | ||
num_opt = 64 | ||
hid_dim = 40 | ||
|
||
'''eval''' | ||
eval_gap = 128 | ||
num_evals = 10 | ||
|
||
print('start training') | ||
device = th.device(f'cuda:{gpu_id}' if th.cuda.is_available() and gpu_id >= 0 else 'cpu') | ||
|
||
obj_task = ObjectiveMISO(dim=dim, device=device) | ||
opt_task = OptimizerTask(dim=dim, device=device) | ||
opt_opti = OptimizerOpti(hid_dim=hid_dim).to(device) | ||
opt_base = th.optim.Adam(opt_opti.parameters(), lr=lr) | ||
|
||
time_start = time.time() | ||
|
||
'''loop''' | ||
for i in range(train_times): | ||
opt_train(obj_task=obj_task, opt_task=opt_task, opt_opti=opt_opti, | ||
num_opt=num_opt, device=device, unroll=unroll, opt_base=opt_base) | ||
|
||
if i % eval_gap == 1: | ||
loss_of_p_evals = [] | ||
for p_eval in obj_task.p_evals: | ||
losses = [] | ||
for h_eval in obj_task.h_evals[:num_evals]: | ||
h_scale = h_eval * (p_eval ** 0.5) | ||
obj_task.args = (h_scale,) | ||
best_result, min_loss = opt_eval(obj_task=obj_task, opt_opti=opt_opti, opt_task=opt_task, | ||
num_opt=num_opt * 2, device=device) | ||
losses.append(-min_loss.item()) | ||
loss_of_p_evals.append(sum(losses) / len(losses)) | ||
time_used = round((time.time() - time_start)) | ||
print(f"{'L2O':>8} {loss_of_p_evals[0]:>9.3f} {loss_of_p_evals[1]:>9.3f} {loss_of_p_evals[2]:>9.3f} " | ||
f"TimeUsed {time_used:9}") | ||
|
||
loss_of_p_evals = [] | ||
for p_eval in obj_task.p_evals: | ||
losses = [] | ||
for h_eval in obj_task.h_evals: | ||
h_scale = h_eval * (p_eval ** 0.5) | ||
obj_task.args = (h_scale,) | ||
best_result, _min_loss = opt_eval(obj_task=obj_task, opt_opti=opt_opti, opt_task=opt_task, | ||
num_opt=num_opt * 2, device=device) | ||
min_loss = obj_task.get_objective(best_result, h_scale) # todo re-calculate loss | ||
losses.append(-min_loss.item()) | ||
loss_of_p_evals.append(sum(losses) / len(losses)) | ||
time_used = round((time.time() - time_start)) | ||
print(f"{'L2O':>8} {loss_of_p_evals[0]:>9.3f} {loss_of_p_evals[1]:>9.3f} {loss_of_p_evals[2]:>9.3f} " | ||
f"TimeUsed {time_used:9}") | ||
|
||
|
||
if __name__ == '__main__': | ||
train_optimizer() |
Oops, something went wrong.