Skip to content

Adaptation of the MSMN repository to the MIMIC-IV-ICD benchmark

Notifications You must be signed in to change notification settings

ASUS-AICS/ICD-MSMN

 
 

Repository files navigation

ICD-MSMN

  • Original Paper: link

Environment

All codes are tested under Python 3.7, PyTorch 1.7.0. Need to install opt_einsum for einsum calculations. At least 32GB GPU are needed for the full settings. Best to use the environment from the LAAT baseline.

Dataset

Follow the instructions in the dataset repository to obtain the dataset.

Training

Here are the commands we used to train the models on a single A100 80GB GPU.

MIMIC-IV-ICD9 Full:

python main.py --n_gpu 1 --version mimic4-icd9 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 8 --gradient_accumulation_steps 2 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path embedding/word2vec_sg0_100.model

MIMIC-IV-ICD10 Full:

python main.py --n_gpu 1 --version mimic4-icd10 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 4 --gradient_accumulation_steps 4 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path embedding/word2vec_sg0_100.model

MIMIC-IV-ICD9 50:

python main.py --n_gpu 1 --version mimic4-icd9-50 --word_embedding_path ./embedding/word2vec_sg0_100.model --combiner lstm --rnn_dim 512 --num_layers 1 --decoder MultiLabelMultiHeadLAATV2 --attention_head 8 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 16 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count

MIMIC-IV-ICD10 50:

python main.py --n_gpu 1 --version mimic4-icd10-50 --word_embedding_path ./embedding/word2vec_sg0_100.model --combiner lstm --rnn_dim 512 --num_layers 1 --decoder MultiLabelMultiHeadLAATV2 --attention_head 8 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 16 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 8

Evaluation

python eval_model.py $MODEL_CHECKPOINT $VERSION $WORD_EMBEDDING_PATH $LENGTH

where

  • $VERSION is mimic4-icd(9|10)[-50] with () denoting alternatives and [] options, respectively,
  • $WORD_EMBEDDING_PATH is the word embeddings you used to train the model (e.g. embedding/word2vec_sg0_100.model)
  • $LENGTH is the maximum length of each input (i.e., 4000 as the default setting for our trained models)

About

Adaptation of the MSMN repository to the MIMIC-IV-ICD benchmark

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.1%
  • Jupyter Notebook 6.9%