-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
20240706 from cogitate-msp1/fmri@master
- Loading branch information
Showing
126 changed files
with
46,846 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
# About | ||
|
||
General information regarding the fMRI analysis pipeline. A comprehensive description of the pipeline and running instructions can be found in `readme.md` | ||
|
||
## Information | ||
|
||
| | | | ||
| --- | --- | | ||
author_name | *Yamil Vidal<sup>1</sup>, David Richter<sup>1</sup>, Aya Khalaf<sup>2</sup>* | ||
author_email | *<[email protected]>, <[email protected]>, <[email protected]>* | ||
PI_name | *Floris de Lange<sup>1</sup>, Hal Blumenfeld<sup>2</sup>* | ||
affiliation | *<sup>1</sup>Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands. <sup>2</sup>Department of Neurology, Yale University School of Medicine, New Haven, CT* | ||
PI_email | *<[email protected]>, <[email protected]>* | ||
programming_language | *Bash, Python, MATLAB* | ||
Is a readme file included with detailed instructions for running the code? | *Yes. readme.md* | ||
Is the environment file provided? | *Yes* | ||
Is there a config file provided to change runtime parameters? | *No* | ||
Does the code run on the sample dataset? | *Yes* |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
""" | ||
Plots ROI accuracy results on a brain surface | ||
Author: Aya Khalaf | ||
Email: [email protected] | ||
Date created: 03-04-2023 | ||
""" | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from plotters import plot_time_series, plot_matrix, plot_rasters, plot_brain | ||
import config | ||
import os | ||
import pandas as pd | ||
# get the parameters dictionary | ||
param = config.param | ||
|
||
# ================================================================================= | ||
# Select whether to apply plotting to category or orientation decoding problems - options 'category' and 'orientation' | ||
decoding_problem = 'category' | ||
#decoding_problem = 'orientation' | ||
#Select within condition decoding or generalization across conditions - options 'within_condition' and 'generalization' | ||
# For orientation decoding, approach should be set to 'within_condition' | ||
approach = 'generalization' | ||
approach = 'within_condition' | ||
# if approach = 'within_condition', the line below selects relevant or irrelevant condition - options 'relevant' and 'irrelevant' | ||
# if approach = 'generalization', the line below selects generalization direction - options 'relevant-irrelevant' and 'irrelevant-relevant' | ||
condition = 'relevant' | ||
condition = 'relevant-irrelevant' | ||
classifier = 'SVM' | ||
# Stimulus categories - options include 'face', 'object', 'letter' , and 'falseFont' | ||
stimulus_categories = ['face', 'object'] | ||
stimulus_categories = ['letter', 'falseFont'] | ||
#stimulus_categories = ['letter', 'falsefont'] | ||
# Number of voxels per ROI (ROI size) | ||
n_voxels = 300 | ||
# Chance level (50% for category decoding (binary) and 33.33% for orientation decoding (3-class) ) | ||
chance_level = 0.5 | ||
csv_dir = os.path.join('/mnt/beegfs/XNAT/COGITATE/fMRI/phase_2/processed/bids/derivatives/decoding/nibetaseries/roi_decoding/',approach, classifier, decoding_problem, stimulus_categories[0] + '_' + stimulus_categories[1] + '_' + str(n_voxels)) | ||
if decoding_problem == 'orientation': | ||
condition = 'relevant+irrelevant' | ||
chance_level = 0.33 | ||
stimulus_category = 'face' | ||
#stimulus_category = 'object' | ||
#stimulus_category = 'letter' | ||
#stimulus_category = 'falseFont' | ||
csv_dir = os.path.join('/mnt/beegfs/XNAT/COGITATE/fMRI/phase_2/processed/bids/derivatives/decoding/nibetaseries/roi_decoding/', approach, classifier, decoding_problem, stimulus_category + '_' + str(n_voxels)) | ||
|
||
if decoding_problem == 'category': | ||
vmin=0.5 | ||
vmax=0.85 | ||
if ((condition=='relevant') | (condition=='irrelevant-relevant')): | ||
cmaps = 'Oranges' | ||
cmap_start = 0.1 | ||
cmap_end = 1 | ||
elif ((condition == 'irrelevant') | (condition == 'relevant-irrelevant')): | ||
cmaps = 'Purples' | ||
cmap_start = 0.5 | ||
cmap_end = 1 | ||
elif decoding_problem == 'orientation': | ||
cmaps = 'Purples' | ||
vmin=0.33 | ||
vmax=0.40 | ||
cmap_start = 0.5 | ||
cmap_end = 1 | ||
|
||
# Plotting brain surface: | ||
acc_values = {'G_front_middle': 0.9, 'Pole_temporal': 0.7, 'G_occipital_middle': 0.6} | ||
#IIT_roi_list = ['GNW','IIT','IIT_excluded', 'IIT_extended', 'G_and_S_frontomargin', 'G_and_S_transv_frontopol', 'G_front_sup', 'G_rectus', 'G_subcallosal', 'S_orbital_lateral', 'S_orbital_med-olfact', 'S_orbital-H_Shaped', 'S_suborbital'] | ||
GNW_roi_list = ['G_and_S_cingul-Ant', 'G_and_S_cingul-Mid-Ant', 'G_and_S_cingul-Mid-Post', 'G_front_inf-Opercular', 'G_front_inf-Orbital', 'G_front_inf-Triangul', 'G_front_middle', 'Lat_Fis-ant-Horizont', 'Lat_Fis-ant-Vertical', 'S_front_inf', 'S_front_middle', 'S_front_sup'] | ||
# IIT Basic ROI list | ||
IIT_roi_list_1 = ['G_temporal_inf', 'Pole_temporal', 'G_cuneus', 'G_occipital_sup', 'G_oc-temp_med-Lingual', 'Pole_occipital', 'S_calcarine', 'G_and_S_occipital_inf', 'G_occipital_middle', 'G_oc-temp_lat-fusifor', 'G_oc-temp_med-Parahip', 'S_intrapariet_and_P_trans', 'S_oc_middle_and_Lunatus', 'S_oc_sup_and_transversal', 'S_temporal_sup'] | ||
roi_list = GNW_roi_list + IIT_roi_list_1 | ||
|
||
csv_file = os.path.join(csv_dir, 'accuracy_stats_' + condition + '.csv') | ||
save_file= os.path.join(csv_dir, condition + '.eps') | ||
data_df = pd.read_csv(csv_file) | ||
rois = (data_df['ROI']).tolist() | ||
accuracies= (data_df['Average Accuracy']).array | ||
Significance = (data_df['Significance']).array | ||
#Significance[10]=0 | ||
#Significance[36]=0 | ||
#G_orbital | ||
#Significance[18]=0 | ||
#Significance[16]=0 | ||
rois_dict = {} | ||
k=0 | ||
for roi in rois: | ||
if roi in roi_list: | ||
if Significance[k]: | ||
rois_dict[roi] =accuracies[k] | ||
k=k+1 | ||
|
||
|
||
plot_brain( roi_map=rois_dict, subject='fsaverage', surface='inflated', hemi='lh', sulc_map='curv', parc='aparc.a2009s', | ||
views=['lateral',(90, -30, 0)],cmap_start=cmap_start, cmap_end=cmap_end, | ||
cmap=cmaps, colorbar=True, colorbar_title='ACC', vmin=vmin, vmax=vmax, outline_overlay=True, overlay_method='overlay', | ||
brain_cmap='Greys', brain_alpha=1, save_file=os.path.join(csv_dir, condition + '_lh_outline_30deg.png')) | ||
|
||
#roi_map_edge_color = [0, 0, 0] to add borders around rois | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
""" | ||
Plots searchlight accuracy maps on a brain surface | ||
Author: Aya Khalaf | ||
Email: [email protected] | ||
Date created: 03-04-2023 | ||
""" | ||
|
||
from plotters import plot_brain | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
import os | ||
import config | ||
|
||
# Select whether to apply plotting to category or orientation decoding problems - options 'category' and 'orientation' | ||
decoding_problem = 'category' | ||
decoding_problem = 'orientation' | ||
# Select within condition decoding or generalization across conditions - options 'within_condition' and 'generalization' | ||
# For orientation decoding, approach should be set to 'within_condition' | ||
approach = 'generalization' | ||
approach = 'within_condition' | ||
# if approach = 'within_condition', the line below selects relevant or irrelevant condition - options 'relevant' and 'irrelevant' | ||
# if approach = 'generalization', the line below selects generalization direction - options 'relevant-irrelevant' and 'irrelevant-relevant' | ||
# For orientation decoding, no need to change 'condition' as it will be specified at line 40. | ||
condition = 'irrelevant-relevant' | ||
#condition ='relevant' | ||
|
||
classifier = 'SVM' | ||
|
||
# Stimulus categories - options include 'face', 'object', 'letter' , and 'falseFont' | ||
# For orientation decoding, do not change 'stimulus_categories' here and change line 42 instead. | ||
stimulus_categories = ['face', 'object'] | ||
#stimulus_categories = ['letter', 'falseFont'] | ||
#stimulus_categories = ['face', 'baseline'] | ||
#stimulus_categories = ['object', 'baseline'] | ||
#stimulus_categories = ['letter', 'baseline'] | ||
#stimulus_categories = ['falseFont', 'baseline'] | ||
#stimulus_categories = ['falseFonts', 'baseline'] | ||
# Radius of searchlight sphere | ||
searchlight_radius = 4 | ||
# Chance level (50% for category decoding (binary) and 33.33% for orientation decoding (3-class) ) | ||
chance_level = 0.5 | ||
|
||
data_dir = os.path.join('/mnt/beegfs/XNAT/COGITATE/fMRI/phase_2/processed/bids/derivatives/decoding/nibetaseries/searchlight_decoding',approach, condition, classifier, str(searchlight_radius) + 'mm', 'category/' + stimulus_categories[0] + '_' + stimulus_categories[1]) | ||
|
||
if decoding_problem == 'orientation': | ||
condition = 'relevant+irrelevant' | ||
chance_level = 0.33 | ||
stimulus_category = 'face' | ||
#stimulus_category = 'object' | ||
#stimulus_category = 'letter' | ||
#stimulus_category = 'falseFont' | ||
data_dir = os.path.join( '/mnt/beegfs/XNAT/COGITATE/fMRI/phase_2/processed/bids/derivatives/decoding/nibetaseries/searchlight_decoding',approach, condition, classifier, str(searchlight_radius) + 'mm', 'Orientation/' + stimulus_category) | ||
|
||
|
||
if decoding_problem == 'category': | ||
if ((condition == 'relevant') | (condition == 'irrelevant-relevant')): | ||
cmaps = 'Oranges' | ||
cmap_start = 0.1 | ||
cmap_end = 1 | ||
elif ((condition == 'irrelevant') | (condition == 'relevant-irrelevant')): | ||
cmaps = 'Purples' | ||
cmap_start = 0.5 | ||
cmap_end = 1 | ||
#plot_brain( surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], overlay_threshold=0, vmin=chance_level, vmax=0.75, outline_overlay=True, save_file=os.path.join(data_dir, condition + '_' + 'lh_outline.png')) | ||
## for the right side | ||
#plot_brain( surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, hemi='rh', overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], overlay_threshold=0, vmin=chance_level, vmax=0.75, outline_overlay=True, views=['medial', 'lateral'], save_file=os.path.join(data_dir, condition + '_' + 'rh_outline.png')) | ||
plot_brain( surface='inflated', cmap=cmaps, overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], overlay_threshold=0, vmin=chance_level, vmax=0.75, cmap_start=cmap_start, cmap_end=cmap_end, outline_overlay=True, views=['lateral',(90, -30, 0)], save_file=os.path.join(data_dir, condition + '_' + 'lh_outline_30deg.png')) | ||
## for the right side | ||
plot_brain( surface='inflated', cmap=cmaps, hemi='rh', overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], overlay_threshold=0, vmin=chance_level, vmax=0.75, cmap_start=cmap_start, cmap_end=cmap_end, outline_overlay=True, views=[(-90, 30, 0), 'lateral'], save_file=os.path.join(data_dir, condition + '_' + 'rh_outline_30deg.png')) | ||
|
||
elif decoding_problem == 'orientation': | ||
param = config.param | ||
colors = [(1, 1, 1), param['colors']['face']] | ||
cmaps = matplotlib.colors.LinearSegmentedColormap.from_list('Custom', colors, N=128) | ||
|
||
""" | ||
plot_brain(surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, | ||
overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], | ||
overlay_threshold=0, vmin=chance_level, vmax=0.45, outline_overlay=True, views=['lateral', (180, 20, -10)], | ||
save_file=os.path.join(data_dir, 'orientation_lh_inf_outline_posterior.png')) | ||
# for the right side | ||
plot_brain(surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, hemi='rh', | ||
overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], | ||
overlay_threshold=0, vmin=chance_level, vmax=0.45, outline_overlay=True, views=[(180, 20, -10), 'lateral'], | ||
save_file=os.path.join(data_dir, 'orientation_rh_inf_outline_posterior.png')) | ||
""" | ||
plot_brain(surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, | ||
overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], | ||
overlay_threshold=0, vmin=chance_level, vmax=0.45, outline_overlay=True, views=['lateral', 'medial'], | ||
save_file=os.path.join(data_dir, 'orientation_lh_inf_outline.png')) | ||
# for the right side | ||
plot_brain(surface='inflated', cmap=cmaps, cmap_start=0.5, cmap_end=1, hemi='rh', | ||
overlays=[os.path.join(data_dir, 'searchlight_group_accuracy_map_nonparametric.nii')], | ||
overlay_threshold=0, vmin=chance_level, vmax=0.45, outline_overlay=True, views=['medial', 'lateral'], | ||
save_file=os.path.join(data_dir, 'orientation_rh_inf_outline.png')) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
param = { | ||
"font": "helvetica", | ||
"font_size": 22, | ||
"figure_size_mm": [183, 108], | ||
"fig_res_dpi": 300, | ||
"colors": { | ||
"iit": [ | ||
0.00392156862745098, | ||
0.45098039215686275, | ||
0.6980392156862745], | ||
"gnw": [ | ||
0.00784313725490196, | ||
0.6196078431372549, | ||
0.45098039215686275 | ||
], | ||
"task relevant": [ | ||
0.8352941176470589, | ||
0.3686274509803922, | ||
0.0 | ||
], | ||
"Irrelevant": [ | ||
0.5450980392156862, | ||
0.16862745098039217, | ||
0.8862745098039215 | ||
], | ||
"face": [ | ||
0/255, | ||
53/255, | ||
68/255 | ||
], | ||
"object": [ | ||
173/255, | ||
80/255, | ||
29/255 | ||
], | ||
"letter": [ | ||
57/255, | ||
115/255, | ||
132/255 | ||
], | ||
"false": [ | ||
97/255, | ||
15/255, | ||
0/255 | ||
], | ||
"500ms": [ | ||
1.0, | ||
0.48627450980392156, | ||
0.0 | ||
], | ||
"1000ms": [ | ||
0.6235294117647059, | ||
0.2823529411764706, | ||
0.0 | ||
], | ||
"1500ms": [ | ||
1.0, | ||
0.7686274509803922, | ||
0.0 | ||
], | ||
"cmap": "RdYlBu_r" | ||
} | ||
} |
Binary file not shown.
Oops, something went wrong.