Skip to content

ColumbiaDVMM/Transform_Covariant_Detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Discriminative and Transformation Covariant Local Feature Detectors

This code is the training and evaluation code for our CVPR 2017 paper. It includes the implement of a translation covariant local feature detector. The affine covariant model will be added in the future.

@inproceedings{zhang2017learning, title={Learning Discriminative and Transformation Covariant Local Feature Detectors}, author={Zhang, Xu and Yu, Felix X. and Karaman, Svebor and Chang, Shih-Fu}, booktitle={CVPR}, year={2017} }

The code is tested on Ubuntu 14.04

Requirement

Python package:

tensorflow>1.0.0, tqdm, cv2, exifread, skimage, glob

Usage

Get the data

Download data from https://www.dropbox.com/s/l7a8zvni6ia5f9g/datasets.tar.gz?dl=0

and put the extract the data to ./data/

Run the code

Change Matlab link in all the files in ./script/

cd ./script

Generate transformed patch and train the model

./batch\_run_train.sh

Extract local feature point

./batch\_run_test.sh

Evaluate the performance

./batch\_run_eval.sh

Acknowledgement

We would like to thank

VLfeat [1], http://www.vlfeat.org/

Tilde [2], https://github.com/kmyid/TILDE

Karel Lenc etal [3], https://github.com/lenck/ddet

for offering the implementations of their methods.

and

Vgg dataset [3]

EF dataset [5]

Webcam dataset [2]

for providing the image data.

[1] A. Vedaldi and B. Fulkerson, VLFeat: An Open and Portable Library of Computer Vision Algorithms

[2] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit. Tilde: A temporally invariant learned detector. CVPR 2015

[3] K. Lenc and A. Vedaldi. Learning covariant feature detectors. In ECCV Workshop on Geometry Meets Deep Learning, 2016.

[4] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. IJCV 2005.

[5] C. L. Zitnick, K. Ramnath, Edge foci interest points, ICCV, 2011

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published