Skip to content

Commit

Permalink
Merge pull request #9 from Mr-Philo/main
Browse files Browse the repository at this point in the history
Add github link for paper FP8-Quantization[2208.09225]
  • Loading branch information
DefTruth authored Apr 8, 2024
2 parents 2772107 + c59ccbd commit 94435c0
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ Awesome-LLM-Inference: A curated list of [📙Awesome LLM Inference Papers with
|Date|Title|Paper|Code|Recom|
|:---:|:---:|:---:|:---:|:---:|
|2022.06|🔥[**ZeroQuant**] Efficient and Affordable Post-Training Quantization for Large-Scale Transformers(@Microsoft) |[[pdf]](https://arxiv.org/pdf/2206.01861.pdf)|[[DeepSpeed]](https://github.com/microsoft/DeepSpeed) ![](https://img.shields.io/github/stars/microsoft/DeepSpeed.svg?style=social)|⭐️⭐️ |
|2022.08|[FP8-Quantization] FP8 Quantization: The Power of the Exponent(@Qualcomm AI Research) | [[pdf]](https://arxiv.org/pdf/2208.09225.pdf) | ⚠️ |⭐️ |
|2022.08|[FP8-Quantization] FP8 Quantization: The Power of the Exponent(@Qualcomm AI Research) | [[pdf]](https://arxiv.org/pdf/2208.09225.pdf) | [[FP8-quantization]](https://github.com/Qualcomm-AI-research/FP8-quantization) ![](https://img.shields.io/github/stars/Qualcomm-AI-research/FP8-quantization.svg?style=social) |⭐️ |
|2022.08|[LLM.int8()] 8-bit Matrix Multiplication for Transformers at Scale(@Facebook AI Research etc) |[[pdf]](https://arxiv.org/pdf/2208.07339.pdf)|[[bitsandbytes]](https://github.com/timdettmers/bitsandbytes) ![](https://img.shields.io/github/stars/timdettmers/bitsandbytes.svg?style=social)|⭐️ |
|2022.10|🔥[**GPTQ**] GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS(@IST Austria etc) |[[pdf]](https://arxiv.org/pdf/2210.17323.pdf) |[[gptq]](https://github.com/IST-DASLab/gptq) ![](https://img.shields.io/github/stars/IST-DASLab/gptq.svg?style=social)|⭐️⭐️ |
|2022.11|🔥[**WINT8/4**] Who Says Elephants Can’t Run: Bringing Large Scale MoE Models into Cloud Scale Production(@NVIDIA&Microsoft) |[[pdf]](https://arxiv.org/pdf/2211.10017.pdf)|[[FasterTransformer]](https://github.com/NVIDIA/FasterTransformer) ![](https://img.shields.io/github/stars/NVIDIA/FasterTransformer.svg?style=social)|⭐️⭐️ |
Expand Down

0 comments on commit 94435c0

Please sign in to comment.