This repository provides a framework for training dexterous grasping policies for robotic hands using NVIDIA's Isaac Gym simulator.
-
Download and install Isaac Gym Preview 4 from NVIDIA's website
-
Verify Isaac Gym installation:
cd isaac-gym/python/examples
python joint_monkey.py
- Clone and install this repository:
git clone https://github.com/dexrobot/dexrobot_isaac
cd dexrobot_isaac
pip install -e .
python DexHandEnv/train.py task=DexCube num_envs=4096 headless=True
num_envs
: Number of parallel environments (default: 4096)headless
: Run without visualization for faster training
To test a trained model:
python DexHandEnv/train.py task=DexCube test=True num_envs=2 checkpoint=runs/DexCube_*/nn/DexHand.pth
python DexHandEnv/train.py task=DexCube test=True num_envs=2 checkpoint=runs/DexCube_06-14-42-29/nn/DexCube.pth
The environment and training parameters can be customized through config files:
- Environment config:
DexHandEnv/config/task/DexHand.yaml
- Training config:
DexHandEnv/config/train/DexHandPPO.yaml
To capture training videos:
python DexHandEnv/train.py task=DexHand capture_video=True capture_video_freq=1500 capture_video_len=100
For distributed training across multiple GPUs:
torchrun --standalone --nnodes=1 --nproc_per_node=2 DexHandEnv/train.py multi_gpu=True task=DexHand
This project is licensed under the Apache License.
This work builds upon the Isaac Gym framework developed by NVIDIA.