Skip to content

Commit

Permalink
monotonicity now "on" by default for adjustment models
Browse files Browse the repository at this point in the history
extra documentation and fixed tests for the above

bug fix in check.bins -- missing $distance not caught in tests
  • Loading branch information
David Lawrence Miller committed Mar 27, 2014
1 parent 8fc4211 commit 2fb895e
Show file tree
Hide file tree
Showing 4 changed files with 39 additions and 22 deletions.
11 changes: 10 additions & 1 deletion R/create.bins.R
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,10 @@ create.bins <- function(data,cutpoints){
cp <- cutpoints

# remove distances outside bins
in.cp.ind <- data>=cp[1] & data<=cp[length(cp)]
in.cp.ind <- data$distance>=cp[1] & data$distance<=cp[length(cp)]
if(!all(in.cp.ind)){
warning("Some distances were outside bins and have been removed.")
}
data <- data[in.cp.ind,]

# pull out the distances (removing the NAs for now)
Expand All @@ -33,6 +36,12 @@ create.bins <- function(data,cutpoints){
distbegin[ind] <- cp[i]
distend[ind] <- cp[i+1]
}
# last cutpoint, include those observations AT the truncation point
ind <- which(d>=cp[i] & d<=cp[i+1])

distbegin[ind] <- cp[i]
distend[ind] <- cp[i+1]


# handle NA distances, that we need to preserve
distbegin.na <- rep(NA,length(data$distance))
Expand Down
23 changes: 13 additions & 10 deletions R/ds.R
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,7 @@
#' \code{distend} then these will be used as bins if \code{cutpoints}
#' is not specified. If both are specified, \code{cutpoints} has
#' precedence.
#' @param monotonicity should the detection function be constrained for
#' monotonicity weakly ("weak"), strictly ("strict") or not at all
#' ("none" or \code{FALSE}). See Montonicity, below. (Default
#' \code{FALSE}).
#' @param monotonicity should the detection function be constrained for monotonicity weakly (\code{"weak"}), strictly (\code{"strict"}) or not at all (\code{"none"} or \code{FALSE}). See Montonicity, below. (Default \code{"strict"}).
#' @param dht.group should density abundance estimates consider all groups to be
#' size 1 (abundance of groups) \code{dht.group=TRUE} or should the
#' abundance of individuals (group size is taken into account),
Expand Down Expand Up @@ -147,7 +144,7 @@
#' library(Distance)
#' data(book.tee.data)
#' tee.data<-book.tee.data$book.tee.dataframe[book.tee.data$book.tee.dataframe$observer==1,]
#' ds.model<-ds(tee.data,4,monotonicity="strict")
#' ds.model<-ds(tee.data,4)
#' summary(ds.model)
#' plot(ds.model)
#'
Expand All @@ -158,17 +155,20 @@
#' samples<-book.tee.data$book.tee.samples
#' obs<-book.tee.data$book.tee.obs
#'
#' ds.dht.model<-ds(tee.data,4,region.table=region,monotonicity="strict",
#' ds.dht.model<-ds(tee.data,4,region.table=region,
#' sample.table=samples,obs.table=obs)
#' summary(ds.dht.model)
#'
#' # specify order 2 cosine adjustments
#' ds.model.cos2<-ds(tee.data,4,adjustment="cos",order=2)
#' summary(ds.model.cos2)
#'
#' # specify order 2 and 3 cosine adjustments - LOTS of non-monotonicity!
#' ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3))
#' summary(ds.model.cos24)
#' # specify order 2 and 3 cosine adjustments, turning monotonicity
#' # constraints off
#' ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3),
#' monotonicity=FALSE)
#' # check for non-monotonicity -- actually no problems
#' check.mono(ds.model.cos24$ddf,plot=TRUE,n.pts=100)
#'
#' # truncate the largest 10% of the data and fit only a hazard-rate
#' # detection function
Expand All @@ -185,7 +185,7 @@ ds<-function(data, truncation=ifelse(is.null(cutpoints),
formula=~1, key=c("hn","hr","unif"),
adjustment=c("cos","herm","poly"),
order=NULL, scale=c("width","scale"),
cutpoints=NULL, monotonicity=FALSE, dht.group=FALSE,
cutpoints=NULL, monotonicity="strict", dht.group=FALSE,
region.table=NULL, sample.table=NULL, obs.table=NULL,
convert.units=1, method="nlminb", quiet=FALSE, debug.level=0,
initial.values=NULL){
Expand Down Expand Up @@ -488,6 +488,9 @@ ds<-function(data, truncation=ifelse(is.null(cutpoints),
" with ", adj.name,"(",
paste(order[1:i],collapse=","),
") adjustments", sep="")
}else{
# if we have only the key function, turn off monotonicity
meta.data$mono <- meta.data$mono.strict <- FALSE
}

model.formula<-paste(model.formula,")",sep="")
Expand Down
22 changes: 13 additions & 9 deletions man/ds.Rd
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ ds(data, truncation = ifelse(is.null(cutpoints), ifelse(is.null(data$distend),
max(data$distance), max(data$distend)), max(cutpoints)),
transect = c("line", "point"), formula = ~1, key = c("hn", "hr",
"unif"), adjustment = c("cos", "herm", "poly"), order = NULL,
scale = c("width", "scale"), cutpoints = NULL, monotonicity = FALSE,
scale = c("width", "scale"), cutpoints = NULL, monotonicity = "strict",
dht.group = FALSE, region.table = NULL, sample.table = NULL,
obs.table = NULL, convert.units = 1, method = "nlminb", quiet = FALSE,
debug.level = 0, initial.values = NULL)
Expand Down Expand Up @@ -75,9 +75,10 @@ ds(data, truncation = ifelse(is.null(cutpoints), ifelse(is.null(data$distend),
\code{cutpoints} has precedence.}

\item{monotonicity}{should the detection function be
constrained for monotonicity weakly ("weak"), strictly
("strict") or not at all ("none" or \code{FALSE}). See
Montonicity, below. (Default \code{FALSE}).}
constrained for monotonicity weakly (\code{"weak"}),
strictly (\code{"strict"}) or not at all (\code{"none"}
or \code{FALSE}). See Montonicity, below. (Default
\code{"strict"}).}

\item{dht.group}{should density abundance estimates
consider all groups to be size 1 (abundance of groups)
Expand Down Expand Up @@ -261,7 +262,7 @@ using \code{ds()}.
library(Distance)
data(book.tee.data)
tee.data<-book.tee.data$book.tee.dataframe[book.tee.data$book.tee.dataframe$observer==1,]
ds.model<-ds(tee.data,4,monotonicity="strict")
ds.model<-ds(tee.data,4)
summary(ds.model)
plot(ds.model)
Expand All @@ -272,17 +273,20 @@ region<-book.tee.data$book.tee.region
samples<-book.tee.data$book.tee.samples
obs<-book.tee.data$book.tee.obs
ds.dht.model<-ds(tee.data,4,region.table=region,monotonicity="strict",
ds.dht.model<-ds(tee.data,4,region.table=region,
sample.table=samples,obs.table=obs)
summary(ds.dht.model)
# specify order 2 cosine adjustments
ds.model.cos2<-ds(tee.data,4,adjustment="cos",order=2)
summary(ds.model.cos2)
# specify order 2 and 3 cosine adjustments - LOTS of non-monotonicity!
ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3))
summary(ds.model.cos24)
# specify order 2 and 3 cosine adjustments, turning monotonicity
# constraints off
ds.model.cos24<-ds(tee.data,4,adjustment="cos",order=c(2,3),
monotonicity=FALSE)
# check for non-monotonicity -- actually no problems
check.mono(ds.model.cos24$ddf,plot=TRUE,n.pts=100)
# truncate the largest 10\% of the data and fit only a hazard-rate
# detection function
Expand Down
5 changes: 3 additions & 2 deletions tests/testthat/test_ds.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ test_that("Simple models work",{

# specify order 2 cosine adjustments
ds.model.cos2<-ds(egdata,4,adjustment="cos",order=2, region.table=region,
sample.table=samples,obs.table=obs)
sample.table=samples,obs.table=obs,monotonicity=FALSE)
# pars and lnl
#result <- ddf(dsmodel=~mcds(key="hn", formula=~1, adj.series="cos",
# adj.order=2), data=egdata, method="ds",
Expand All @@ -58,7 +58,8 @@ test_that("Simple models work",{

# specify order 2 and 4 cosine adjustments
ds.model.cos24<-ds(egdata,4,adjustment="cos",order=c(2,4),
region.table=region, sample.table=samples, obs.table=obs)
region.table=region, sample.table=samples, obs.table=obs,
monotonicity=FALSE)
tp <- c(0.92121582, -0.03712634, -0.03495348)
names(tp) <- c("X.Intercept.","V2","V3")
expect_equal(ds.model.cos24$ddf$par, tp)
Expand Down

0 comments on commit 2fb895e

Please sign in to comment.