Skip to content

Commit

Permalink
Fix test.
Browse files Browse the repository at this point in the history
  • Loading branch information
gebner committed Jan 13, 2025
1 parent 66577e4 commit f23305a
Show file tree
Hide file tree
Showing 2 changed files with 48 additions and 48 deletions.
48 changes: 24 additions & 24 deletions tests/error-messages/Monoid.fst.json_output.expected
Original file line number Diff line number Diff line change
Expand Up @@ -345,8 +345,8 @@ let left_action_morphism f mf la lb = forall (g: ma) (x: a). lb.act (mf g) (f x)
Module after type checking:
module Monoid
Declarations: [
let right_unitality_lemma m u476 mult = forall (x: m). mult x u476 == x
let left_unitality_lemma m u476 mult = forall (x: m). mult u476 x == x
let right_unitality_lemma m u466 mult = forall (x: m). mult x u466 == x
let left_unitality_lemma m u466 mult = forall (x: m). mult u466 x == x
let associativity_lemma m mult = forall (x: m) (y: m) (z: m). mult (mult x y) z == mult x (mult y z)
unopteq
type monoid (m: Type) =
Expand Down Expand Up @@ -382,25 +382,25 @@ val monoid__uu___haseq: Prims.l_True /\



let intro_monoid m u476 mult = Monoid.Monoid u476 mult () () () <: Prims.Pure (Monoid.monoid m)
let intro_monoid m u466 mult = Monoid.Monoid u466 mult () () () <: Prims.Pure (Monoid.monoid m)
let nat_plus_monoid =
let add x y = x + y <: Prims.nat in
Monoid.intro_monoid Prims.nat 0 add
let int_plus_monoid = Monoid.intro_monoid Prims.int 0 Prims.op_Addition
let conjunction_monoid =
let u474 = FStar.Pervasives.singleton Prims.l_True in
let u464 = FStar.Pervasives.singleton Prims.l_True in
let mult p q = p /\ q <: Prims.prop in
let left_unitality_helper p =
(assert (mult u474 p <==> p);
FStar.PropositionalExtensionality.apply (mult u474 p) p)
(assert (mult u464 p <==> p);
FStar.PropositionalExtensionality.apply (mult u464 p) p)
<:
FStar.Pervasives.Lemma (ensures mult u474 p == p)
FStar.Pervasives.Lemma (ensures mult u464 p == p)
in
let right_unitality_helper p =
(assert (mult p u474 <==> p);
FStar.PropositionalExtensionality.apply (mult p u474) p)
(assert (mult p u464 <==> p);
FStar.PropositionalExtensionality.apply (mult p u464) p)
<:
FStar.Pervasives.Lemma (ensures mult p u474 == p)
FStar.Pervasives.Lemma (ensures mult p u464 == p)
in
let associativity_helper p1 p2 p3 =
(assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
Expand All @@ -409,26 +409,26 @@ let conjunction_monoid =
FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
in
FStar.Classical.forall_intro right_unitality_helper;
assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro left_unitality_helper;
assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro_3 associativity_helper;
assert (Monoid.associativity_lemma Prims.prop mult);
Monoid.intro_monoid Prims.prop u474 mult
Monoid.intro_monoid Prims.prop u464 mult
let disjunction_monoid =
let u474 = FStar.Pervasives.singleton Prims.l_False in
let u464 = FStar.Pervasives.singleton Prims.l_False in
let mult p q = p \/ q <: Prims.prop in
let left_unitality_helper p =
(assert (mult u474 p <==> p);
FStar.PropositionalExtensionality.apply (mult u474 p) p)
(assert (mult u464 p <==> p);
FStar.PropositionalExtensionality.apply (mult u464 p) p)
<:
FStar.Pervasives.Lemma (ensures mult u474 p == p)
FStar.Pervasives.Lemma (ensures mult u464 p == p)
in
let right_unitality_helper p =
(assert (mult p u474 <==> p);
FStar.PropositionalExtensionality.apply (mult p u474) p)
(assert (mult p u464 <==> p);
FStar.PropositionalExtensionality.apply (mult p u464) p)
<:
FStar.Pervasives.Lemma (ensures mult p u474 == p)
FStar.Pervasives.Lemma (ensures mult p u464 == p)
in
let associativity_helper p1 p2 p3 =
(assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
Expand All @@ -437,12 +437,12 @@ let disjunction_monoid =
FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
in
FStar.Classical.forall_intro right_unitality_helper;
assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro left_unitality_helper;
assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro_3 associativity_helper;
assert (Monoid.associativity_lemma Prims.prop mult);
Monoid.intro_monoid Prims.prop u474 mult
Monoid.intro_monoid Prims.prop u464 mult
let bool_and_monoid =
let and_ b1 b2 = b1 && b2 in
Monoid.intro_monoid Prims.bool true and_
Expand Down Expand Up @@ -520,7 +520,7 @@ let _ =
Monoid.intro_monoid_morphism Monoid.neg Monoid.disjunction_monoid Monoid.conjunction_monoid
let mult_act_lemma m a mult act =
forall (x: m) (x': m) (y: a). act (mult x x') y == act x (act x' y)
let unit_act_lemma m a u478 act = forall (y: a). act u478 y == y
let unit_act_lemma m a u468 act = forall (y: a). act u468 y == y
unopteq
type left_action (mm: Monoid.monoid m) (a: Type) =
| LAct :
Expand Down
48 changes: 24 additions & 24 deletions tests/error-messages/Monoid.fst.output.expected
Original file line number Diff line number Diff line change
Expand Up @@ -345,8 +345,8 @@ let left_action_morphism f mf la lb = forall (g: ma) (x: a). lb.act (mf g) (f x)
Module after type checking:
module Monoid
Declarations: [
let right_unitality_lemma m u476 mult = forall (x: m). mult x u476 == x
let left_unitality_lemma m u476 mult = forall (x: m). mult u476 x == x
let right_unitality_lemma m u466 mult = forall (x: m). mult x u466 == x
let left_unitality_lemma m u466 mult = forall (x: m). mult u466 x == x
let associativity_lemma m mult = forall (x: m) (y: m) (z: m). mult (mult x y) z == mult x (mult y z)
unopteq
type monoid (m: Type) =
Expand Down Expand Up @@ -382,25 +382,25 @@ val monoid__uu___haseq: Prims.l_True /\



let intro_monoid m u476 mult = Monoid.Monoid u476 mult () () () <: Prims.Pure (Monoid.monoid m)
let intro_monoid m u466 mult = Monoid.Monoid u466 mult () () () <: Prims.Pure (Monoid.monoid m)
let nat_plus_monoid =
let add x y = x + y <: Prims.nat in
Monoid.intro_monoid Prims.nat 0 add
let int_plus_monoid = Monoid.intro_monoid Prims.int 0 Prims.op_Addition
let conjunction_monoid =
let u474 = FStar.Pervasives.singleton Prims.l_True in
let u464 = FStar.Pervasives.singleton Prims.l_True in
let mult p q = p /\ q <: Prims.prop in
let left_unitality_helper p =
(assert (mult u474 p <==> p);
FStar.PropositionalExtensionality.apply (mult u474 p) p)
(assert (mult u464 p <==> p);
FStar.PropositionalExtensionality.apply (mult u464 p) p)
<:
FStar.Pervasives.Lemma (ensures mult u474 p == p)
FStar.Pervasives.Lemma (ensures mult u464 p == p)
in
let right_unitality_helper p =
(assert (mult p u474 <==> p);
FStar.PropositionalExtensionality.apply (mult p u474) p)
(assert (mult p u464 <==> p);
FStar.PropositionalExtensionality.apply (mult p u464) p)
<:
FStar.Pervasives.Lemma (ensures mult p u474 == p)
FStar.Pervasives.Lemma (ensures mult p u464 == p)
in
let associativity_helper p1 p2 p3 =
(assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
Expand All @@ -409,26 +409,26 @@ let conjunction_monoid =
FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
in
FStar.Classical.forall_intro right_unitality_helper;
assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro left_unitality_helper;
assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro_3 associativity_helper;
assert (Monoid.associativity_lemma Prims.prop mult);
Monoid.intro_monoid Prims.prop u474 mult
Monoid.intro_monoid Prims.prop u464 mult
let disjunction_monoid =
let u474 = FStar.Pervasives.singleton Prims.l_False in
let u464 = FStar.Pervasives.singleton Prims.l_False in
let mult p q = p \/ q <: Prims.prop in
let left_unitality_helper p =
(assert (mult u474 p <==> p);
FStar.PropositionalExtensionality.apply (mult u474 p) p)
(assert (mult u464 p <==> p);
FStar.PropositionalExtensionality.apply (mult u464 p) p)
<:
FStar.Pervasives.Lemma (ensures mult u474 p == p)
FStar.Pervasives.Lemma (ensures mult u464 p == p)
in
let right_unitality_helper p =
(assert (mult p u474 <==> p);
FStar.PropositionalExtensionality.apply (mult p u474) p)
(assert (mult p u464 <==> p);
FStar.PropositionalExtensionality.apply (mult p u464) p)
<:
FStar.Pervasives.Lemma (ensures mult p u474 == p)
FStar.Pervasives.Lemma (ensures mult p u464 == p)
in
let associativity_helper p1 p2 p3 =
(assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
Expand All @@ -437,12 +437,12 @@ let disjunction_monoid =
FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
in
FStar.Classical.forall_intro right_unitality_helper;
assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro left_unitality_helper;
assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
FStar.Classical.forall_intro_3 associativity_helper;
assert (Monoid.associativity_lemma Prims.prop mult);
Monoid.intro_monoid Prims.prop u474 mult
Monoid.intro_monoid Prims.prop u464 mult
let bool_and_monoid =
let and_ b1 b2 = b1 && b2 in
Monoid.intro_monoid Prims.bool true and_
Expand Down Expand Up @@ -520,7 +520,7 @@ let _ =
Monoid.intro_monoid_morphism Monoid.neg Monoid.disjunction_monoid Monoid.conjunction_monoid
let mult_act_lemma m a mult act =
forall (x: m) (x': m) (y: a). act (mult x x') y == act x (act x' y)
let unit_act_lemma m a u478 act = forall (y: a). act u478 y == y
let unit_act_lemma m a u468 act = forall (y: a). act u468 y == y
unopteq
type left_action (mm: Monoid.monoid m) (a: Type) =
| LAct :
Expand Down

0 comments on commit f23305a

Please sign in to comment.