Skip to content

Commit

Permalink
Merge pull request #15 from Ferg-Lab/sd_edits
Browse files Browse the repository at this point in the history
edits to parameters notes
  • Loading branch information
sivadasetty authored Jul 20, 2023
2 parents 9e2f833 + 13d5def commit 34c0c73
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion parameters.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ Label for referencing this module elsewhere in the PLUMED file.

- PINESATOMS: Total number of atom types. This is the same as the length of ATOMTYPES and is used for detecting errors in ATOMTYPES declaration.

- ATOMTYPES: All atomtypes of solute + solvent for defining the blocks in PIV. In the ONLYCROSS case, the order of the final PIV is based on the sequence of the atom types defined here. In brief, the order of PIV is solute1-solute2, solute1-solute3, ..., solute1-soluteN, solute1-OW [of size equal to NL_CONSTANT_SIZE defined below], solute1-H1 [of size equal to NL_CONSTANT_SIZE defined below], solute2-solute3, solute2-solute4, ..., solute2-soluteN, solute2-OW [of size equal to NL_CONSTANT_SIZE defined below], solute2-H1 [of size equal to NL_CONSTANT_SIZE defined below], ..., soluteN-OW [of size equal to NL_CONSTANT_SIZE defined below], soluteN-H1 [of size equal to NL_CONSTANT_SIZE defined below]. The oxygen atoms are extracted based on NL_CUTOFF and only the number of oxygen atoms equal to NL_CONSTANT_SIZE are retained. Similarly, hydrogen atoms are extracted based on atom indices that share the residue numbers with the oxygen atom indices and only NL_CONSTANT_SIZE hydrogen atoms are retained. Consequently, the total number of elements in PIV is equal to (PINESATOMS-3)x(PINESATOMS-3)x0.5 + (PINESATOMS-3)xNL_CONSTANT_SIZE + (PINESATOMS-3)xNL_CONSTANT_SIZE. The number of blocks is (PINESATOMS-3)x(PINESATOMS-3)x0.5 + (PINESATOMS-3) + (PINESATOMS-3)
- ATOMTYPES: All atomtypes of solute + solvent for defining the blocks in PIV. In the ONLYCROSS case, the order of the final PIV is based on the sequence of the atom types defined here. In brief, the order of PIV is solute1-solute2, solute1-solute3, ..., solute1-soluteN, solute1-OW [of size equal to NL_CONSTANT_SIZE defined below], solute1-H1 [of size equal to NL_CONSTANT_SIZE defined below], solute2-solute3, solute2-solute4, ..., solute2-soluteN, solute2-OW [of size equal to NL_CONSTANT_SIZE defined below], solute2-H1 [of size equal to NL_CONSTANT_SIZE defined below], ..., soluteN-OW [of size equal to NL_CONSTANT_SIZE defined below], soluteN-H1 [of size equal to NL_CONSTANT_SIZE defined below]. The oxygen atoms are extracted based on NL_CUTOFF and only the number of oxygen atoms equal to NL_CONSTANT_SIZE are retained. Similarly, hydrogen atoms are extracted based on atom indices that share the residue numbers with the oxygen atom indices and only NL_CONSTANT_SIZE hydrogen atoms are retained. Consequently, the total number of elements in PIV is equal to (PINESATOMS-3)x(PINESATOMS-3)x0.5 + (PINESATOMS-3)xNL_CONSTANT_SIZE + 2x(PINESATOMS-3)xNL_CONSTANT_SIZE. The number of blocks is (PINESATOMS-3)x(PINESATOMS-3)x0.5 + (PINESATOMS-3) + (PINESATOMS-3)

- SFACTOR: Should be the same size as of nblocks = (PINESATOMS-3)x(PINESATOMS-3)x0.5 + (PINESATOMS-3) + (PINESATOMS-3)

Expand Down

0 comments on commit 34c0c73

Please sign in to comment.