Skip to content

Hardeepex/scrapegost

Repository files navigation

scrapeghost

scrapeghost logo

scrapeghost is an experimental library for scraping websites using OpenAI's GPT.

Source: https://github.com/jamesturk/scrapeghost

Documentation: https://jamesturk.github.io/scrapeghost/

Issues: https://github.com/jamesturk/scrapeghost/issues

PyPI badge Test badge

Use at your own risk. This library makes considerably expensive calls ($0.36 for a GPT-4 call on a moderately sized page.) Cost estimates are based on the OpenAI pricing page and not guaranteed to be accurate.

Features

src/main.py usage - This script uses selectolax for initial HTML parsing to extract the main content of a webpage and then passes this data on to scrapeghost for further processing and filtering. To use the script, follow these instructions:

python src/main.py

This will process the content from a hardcoded URL and print out the extracted data according to the defined schema.

The purpose of this library is to provide a convenient interface for exploring web scraping with GPT.

While the bulk of the work is done by the GPT model, scrapeghost provides a number of features to make it easier to use.

Python-based schema definition - Define the shape of the data you want to extract as any Python object, with as much or little detail as you want.

Preprocessing

  • HTML cleaning - Remove unnecessary HTML to reduce the size and cost of API requests.
  • CSS and XPath selectors - Pre-filter HTML by writing a single CSS or XPath selector.
  • Auto-splitting - Optionally split the HTML into multiple calls to the model, allowing for larger pages to be scraped.

Postprocessing

  • JSON validation - Ensure that the response is valid JSON. (With the option to kick it back to GPT for fixes if it's not.)
  • Schema validation - Go a step further, use a pydantic schema to validate the response.
  • Hallucination check - Does the data in the response truly exist on the page?

Cost Controls

  • Scrapers keep running totals of how many tokens have been sent and received, so costs can be tracked.
  • Support for automatic fallbacks (e.g. use cost-saving GPT-3.5-Turbo by default, fall back to GPT-4 if needed.)
  • Allows setting a budget and stops the scraper if the budget is exceeded.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 3

  •  
  •  
  •